These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24026204)

  • 1. Cork stoppers as an effective sorbent for water treatment: the removal of mercury at environmentally relevant concentrations and conditions.
    Lopes CB; Oliveira JR; Rocha LS; Tavares DS; Silva CM; Silva SP; Hartog N; Duarte AC; Pereira E
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2108-2121. PubMed ID: 24026204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valuation of banana peels as an effective biosorbent for mercury removal under low environmental concentrations.
    Fabre E; Lopes CB; Vale C; Pereira E; Silva CM
    Sci Total Environ; 2020 Mar; 709():135883. PubMed ID: 31887511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive effects on mercury removal by an agricultural waste: application to synthetic and natural spiked waters.
    Rocha LS; Lopes CB; Henriques B; Tavares DS; Borges JA; Duarte AC; Pereira E
    Environ Technol; 2014; 35(5-8):661-73. PubMed ID: 24645446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of industrial minerals on the removal of mercury species from liquid effluents.
    Melamed R; da Luz AB
    Sci Total Environ; 2006 Sep; 368(1):403-6. PubMed ID: 16274731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies.
    Anoop Krishnan K; Anirudhan TS
    J Hazard Mater; 2002 May; 92(2):161-83. PubMed ID: 11992701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of Hg(II) from solutions using Cajanus cajan husk as a new sorbent.
    Devani MA; Munshi B; Oubagaranadin JUK; Lal BB; Mandal S
    Environ Technol; 2017 Aug; 38(15):1878-1886. PubMed ID: 27666527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass.
    Saman N; Johari K; Song ST; Kong H; Cheu SC; Mat H
    Chemosphere; 2017 Mar; 171():19-30. PubMed ID: 28002763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions.
    Arias Arias FE; Beneduci A; Chidichimo F; Furia E; Straface S
    Chemosphere; 2017 Aug; 180():11-23. PubMed ID: 28390230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of cork and pine bark powders as biosorbents for potentially toxic elements present in aqueous solution.
    González-Feijoo R; Santás-Miguel V; Arenas-Lago D; Álvarez-Rodríguez E; Núñez-Delgado A; Arias-Estévez M; Pérez-Rodríguez P
    Environ Res; 2024 Jun; 250():118455. PubMed ID: 38367838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective removal of mercury(II) from wastewater using polythioamides.
    Kagaya S; Miyazaki H; Ito M; Tohda K; Kanbara T
    J Hazard Mater; 2010 Mar; 175(1-3):1113-5. PubMed ID: 19942346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk.
    El-Shafey EI
    J Hazard Mater; 2010 Mar; 175(1-3):319-27. PubMed ID: 19883976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch equilibrium and kinetics of mercury removal from aqueous solutions using polythiophene/graphene oxide nanocomposite.
    Muliwa AM; Onyango MS; Maity A; Ochieng A
    Water Sci Technol; 2017 Jun; 75(12):2841-2851. PubMed ID: 28659524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [SnS
    Chen L; Xu H; Xie J; Liu X; Yuan Y; Liu P; Qu Z; Yan N
    Environ Pollut; 2019 Apr; 247():146-154. PubMed ID: 30669082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient removal of Hg
    Wu J; De Antonio Mario E; Yang B; Liu C; Jia F; Song S
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7709-7718. PubMed ID: 29288299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of trace mercury (II) from aqueous solution by in situ MnO(x) combined with poly-aluminum chloride.
    Lu X; Huangfu X; Zhang X; Wang Y; Ma J
    J Water Health; 2015 Jun; 13(2):383-93. PubMed ID: 26042971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analog synthesis of artificial humic substances for efficient removal of mercury.
    Zhang S; Song J; Du Q; Cheng K; Yang F
    Chemosphere; 2020 Jul; 250():126606. PubMed ID: 32234628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of mercury from an alumina refinery aqueous stream.
    Mullett M; Tardio J; Bhargava S; Dobbs C
    J Hazard Mater; 2007 Jun; 144(1-2):274-82. PubMed ID: 17123705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of mercury(II) from wastewater using camel bone charcoal.
    Hassan SS; Awwad NS; Aboterika AH
    J Hazard Mater; 2008 Jun; 154(1-3):992-7. PubMed ID: 18093728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur rich microporous polymer enables rapid and efficient removal of mercury(II) from water.
    Xu D; Wu WD; Qi HJ; Yang RX; Deng WQ
    Chemosphere; 2018 Apr; 196():174-181. PubMed ID: 29304455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorptive removal of Hg
    Rubinos DA; Barral MT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(1):84-98. PubMed ID: 27737613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.