These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24026224)

  • 1. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors.
    Wu C; Lu X; Peng L; Xu K; Peng X; Huang J; Yu G; Xie Y
    Nat Commun; 2013; 4():2431. PubMed ID: 24026224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.
    Feng J; Sun X; Wu C; Peng L; Lin C; Hu S; Yang J; Xie Y
    J Am Chem Soc; 2011 Nov; 133(44):17832-8. PubMed ID: 21951158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors.
    Raju K; Ozoemena KI
    Sci Rep; 2015 Dec; 5():17629. PubMed ID: 26631578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin, Wrinkled, Vertically Aligned Co(OH)
    Sheng H; Zhang X; Ma Y; Wang P; Zhou J; Su Q; Lan W; Xie E; Zhang CJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8992-9001. PubMed ID: 30694040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Materials for High-Energy Solid-State Asymmetric Pseudocapacitors with High Mass Loadings.
    Chodankar NR; Patil SJ; Rama Raju GS; Lee DW; Dubal DP; Huh YS; Han YK
    ChemSusChem; 2020 Mar; 13(6):1582-1592. PubMed ID: 31654465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors.
    Javed MS; Dai S; Wang M; Xi Y; Lang Q; Guo D; Hu C
    Nanoscale; 2015 Aug; 7(32):13610-8. PubMed ID: 26206591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wrinkled two-dimensional ultrathin Cu(ii)-porphyrin framework nanosheets hybridized with polypyrrole for flexible all-solid-state supercapacitors.
    Zhao W; Wang W; Peng J; Chen T; Jin B; Liu S; Huang W; Zhao Q
    Dalton Trans; 2019 Jul; 48(26):9631-9638. PubMed ID: 30869090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Few-layered CoHPO4 · 3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors.
    Pang H; Wang S; Shao W; Zhao S; Yan B; Li X; Li S; Chen J; Du W
    Nanoscale; 2013 Jul; 5(13):5752-7. PubMed ID: 23736798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
    Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS
    Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-standing porous carbon nanofiber/ultrathin graphite hybrid for flexible solid-state supercapacitors.
    Qin K; Kang J; Li J; Shi C; Li Y; Qiao Z; Zhao N
    ACS Nano; 2015 Jan; 9(1):481-7. PubMed ID: 25567451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors.
    Zhou C; Liu J
    Nanotechnology; 2014 Jan; 25(3):035402. PubMed ID: 24356470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors.
    Qiu Y; Zhao Y; Yang X; Li W; Wei Z; Xiao J; Leung SF; Lin Q; Wu H; Zhang Y; Fan Z; Yang S
    Nanoscale; 2014 Apr; 6(7):3626-31. PubMed ID: 24562413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a Three-Dimensional Interconnected Oxygen-, Boron-, Nitrogen-, and Phosphorus Tetratomic-Doped Porous Carbon Network as Electrode Material for the Construction of a Superior Flexible Supercapacitor.
    Ma L; Bi Z; Zhang W; Zhang Z; Xiao Y; Niu H; Huang Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46170-46180. PubMed ID: 32935965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors.
    Du J; Zhou G; Zhang H; Cheng C; Ma J; Wei W; Chen L; Wang T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7405-9. PubMed ID: 23815528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids.
    Su H; Xiong T; Tan Q; Yang F; Appadurai PBS; Afuwape AA; Balogun MJT; Huang Y; Guo K
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32531987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin cerium orthovanadate nanobelts for high-performance flexible all-solid-state asymmetric supercapacitors.
    He J; Zhao J; Run Z; Sun M; Pang H
    Chem Asian J; 2015 Feb; 10(2):338-43. PubMed ID: 25410018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of NiO/Ni(OH)2/PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors.
    Yang H; Xu H; Li M; Zhang L; Huang Y; Hu X
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1774-9. PubMed ID: 26709837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.