BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24026351)

  • 1. Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis.
    Cano CE; Hamidi T; Garcia MN; Grasso D; Loncle C; Garcia S; Calvo E; Lomberk G; Dusetti N; Bartholin L; Urrutia R; Iovanna JL
    Gut; 2014 Jun; 63(6):984-95. PubMed ID: 24026351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis.
    Hamidi T; Algül H; Cano CE; Sandi MJ; Molejon MI; Riemann M; Calvo EL; Lomberk G; Dagorn JC; Weih F; Urrutia R; Schmid RM; Iovanna JL
    J Clin Invest; 2012 Jun; 122(6):2092-103. PubMed ID: 22565310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia.
    McDonald PC; Chafe SC; Brown WS; Saberi S; Swayampakula M; Venkateswaran G; Nemirovsky O; Gillespie JA; Karasinska JM; Kalloger SE; Supuran CT; Schaeffer DF; Bashashati A; Shah SP; Topham JT; Yapp DT; Li J; Renouf DJ; Stanger BZ; Dedhar S
    Gastroenterology; 2019 Sep; 157(3):823-837. PubMed ID: 31078621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic inactivation of the pancreatitis-inducible gene Nupr1 impairs PanIN formation by modulating Kras(G12D)-induced senescence.
    Grasso D; Garcia MN; Hamidi T; Cano C; Calvo E; Lomberk G; Urrutia R; Iovanna JL
    Cell Death Differ; 2014 Oct; 21(10):1633-41. PubMed ID: 24902898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice.
    Kimura Y; Fukuda A; Ogawa S; Maruno T; Takada Y; Tsuda M; Hiramatsu Y; Araki O; Nagao M; Yoshikawa T; Ikuta K; Yoshioka T; Wang Z; Akiyama H; Wright CV; Takaori K; Uemoto S; Chiba T; Seno H
    Gastroenterology; 2018 Jul; 155(1):194-209.e2. PubMed ID: 29604291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
    Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH
    Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAGE gene deletion inhibits the development and progression of ductal neoplasia and prolongs survival in a murine model of pancreatic cancer.
    DiNorcia J; Lee MK; Moroziewicz DN; Winner M; Suman P; Bao F; Remotti HE; Zou YS; Yan SF; Qiu W; Su GH; Schmidt AM; Allendorf JD
    J Gastrointest Surg; 2012 Jan; 16(1):104-12; discussion 112. PubMed ID: 22052106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting NUPR1-dependent stress granules formation to induce synthetic lethality in Kras
    Santofimia-Castaño P; Fraunhoffer N; Liu X; Bessone IF; di Magliano MP; Audebert S; Camoin L; Estaras M; Brenière M; Modesti M; Lomberk G; Urrutia R; Soubeyran P; Neira JL; Iovanna J
    EMBO Mol Med; 2024 Mar; 16(3):475-505. PubMed ID: 38360999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse.
    Bardeesy N; Aguirre AJ; Chu GC; Cheng KH; Lopez LV; Hezel AF; Feng B; Brennan C; Weissleder R; Mahmood U; Hanahan D; Redston MS; Chin L; Depinho RA
    Proc Natl Acad Sci U S A; 2006 Apr; 103(15):5947-52. PubMed ID: 16585505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.
    Philip B; Roland CL; Daniluk J; Liu Y; Chatterjee D; Gomez SB; Ji B; Huang H; Wang H; Fleming JB; Logsdon CD; Cruz-Monserrate Z
    Gastroenterology; 2013 Dec; 145(6):1449-58. PubMed ID: 23958541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SETDB1 Inhibits p53-Mediated Apoptosis and Is Required for Formation of Pancreatic Ductal Adenocarcinomas in Mice.
    Ogawa S; Fukuda A; Matsumoto Y; Hanyu Y; Sono M; Fukunaga Y; Masuda T; Araki O; Nagao M; Yoshikawa T; Goto N; Hiramatsu Y; Tsuda M; Maruno T; Nakanishi Y; Hussein MS; Tsuruyama T; Takaori K; Uemoto S; Seno H
    Gastroenterology; 2020 Aug; 159(2):682-696.e13. PubMed ID: 32360551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and pharmacologic abrogation of Snail1 inhibits acinar-to-ductal metaplasia in precursor lesions of pancreatic ductal adenocarcinoma and pancreatic injury.
    Fendrich V; Jendryschek F; Beeck S; Albers M; Lauth M; Esni F; Heeger K; Dengler J; Slater EP; Holler JPN; Baier A; Bartsch DK; Waldmann J
    Oncogene; 2018 Apr; 37(14):1845-1856. PubMed ID: 29367759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics.
    Ocal O; Pashkov V; Kollipara RK; Zolghadri Y; Cruz VH; Hale MA; Heath BR; Artyukhin AB; Christie AL; Tsoulfas P; Lorens JB; Swift GH; Brekken RA; Wilkie TM
    Dis Model Mech; 2015 Oct; 8(10):1201-11. PubMed ID: 26438693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated K-ras and INK4a/Arf deficiency cooperate during the development of pancreatic cancer by activation of Notch and NF-κB signaling pathways.
    Wang Z; Banerjee S; Ahmad A; Li Y; Azmi AS; Gunn JR; Kong D; Bao B; Ali S; Gao J; Mohammad RM; Miele L; Korc M; Sarkar FH
    PLoS One; 2011; 6(6):e20537. PubMed ID: 21673986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16.
    Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C
    Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression.
    Ijichi H; Chytil A; Gorska AE; Aakre ME; Fujitani Y; Fujitani S; Wright CV; Moses HL
    Genes Dev; 2006 Nov; 20(22):3147-60. PubMed ID: 17114585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer.
    Zhang S; Chung WC; Xu K
    Oncogene; 2016 May; 35(19):2485-95. PubMed ID: 26279302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
    Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C
    Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pivotal Role of the Chromatin Protein Nupr1 in Kras-Induced Senescence and Transformation.
    Grasso D; Bintz J; Lomberk G; Molejon MI; Loncle C; Garcia MN; Lopez MB; Urrutia R; Iovanna JL
    Sci Rep; 2015 Nov; 5():17549. PubMed ID: 26617245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas.
    Wang W; Friedland SC; Guo B; O'Dell MR; Alexander WB; Whitney-Miller CL; Agostini-Vulaj D; Huber AR; Myers JR; Ashton JM; Dunne RF; Steiner LA; Hezel AF
    Gut; 2019 Jul; 68(7):1245-1258. PubMed ID: 30228219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.