These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 24026699)
1. Application of PNA openers for fluorescence-based detection of bacterial DNA. Smolina I Methods Mol Biol; 2013; 1039():223-31. PubMed ID: 24026699 [TBL] [Abstract][Full Text] [Related]
2. PNA openers and their applications for bacterial DNA diagnostics. Smolina IV; Frank-Kamenetskii MD Methods Mol Biol; 2014; 1050():121-30. PubMed ID: 24297355 [TBL] [Abstract][Full Text] [Related]
3. Detection of low-copy-number genomic DNA sequences in individual bacterial cells by using peptide nucleic acid-assisted rolling-circle amplification and fluorescence in situ hybridization. Smolina I; Lee C; Frank-Kamenetskii M Appl Environ Microbiol; 2007 Apr; 73(7):2324-8. PubMed ID: 17293504 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence-based detection of short DNA sequences under non-denaturing conditions. Smolina IV; Kuhn H; Lee C; Frank-Kamenetskii MD Bioorg Med Chem; 2008 Jan; 16(1):84-93. PubMed ID: 17512202 [TBL] [Abstract][Full Text] [Related]
5. Advantages of peptide nucleic acid oligonucleotides for sensitive site directed 16S rRNA fluorescence in situ hybridization (FISH) detection of Campylobacter jejuni, Campylobacter coli and Campylobacter lari. Lehtola MJ; Loades CJ; Keevil CW J Microbiol Methods; 2005 Aug; 62(2):211-9. PubMed ID: 16009278 [TBL] [Abstract][Full Text] [Related]
6. Coupled rolling circle amplification loop-mediated amplification for rapid detection of short DNA sequences. Marciniak J; Kummel A; Esener S; Heller M; Messmer B Biotechniques; 2008 Sep; 45(3):275-80. PubMed ID: 18778251 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence melting curve analysis using self-quenching dual-labeled peptide nucleic acid probes for simultaneously identifying multiple DNA sequences. Ahn JJ; Kim Y; Lee SY; Hong JY; Kim GW; Hwang SY Anal Biochem; 2015 Sep; 484():143-7. PubMed ID: 26049100 [TBL] [Abstract][Full Text] [Related]
8. Detection of target nucleic acids and proteins by amplification of circularizable probes. Zhang DY; Liu B Expert Rev Mol Diagn; 2003 Mar; 3(2):237-48. PubMed ID: 12647998 [TBL] [Abstract][Full Text] [Related]
9. PNA fluorescent in situ hybridization (FISH) for rapid microbiology and cytogenetic analysis. Stender H; Williams B; Coull J Methods Mol Biol; 2014; 1050():167-78. PubMed ID: 24297359 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation. Kerman K; Vestergaard M; Nagatani N; Takamura Y; Tamiya E Anal Chem; 2006 Apr; 78(7):2182-9. PubMed ID: 16579596 [TBL] [Abstract][Full Text] [Related]
11. Amplification of circularizable probes for the detection of target nucleic acids and proteins. Zhang D; Wu J; Ye F; Feng T; Lee I; Yin B Clin Chim Acta; 2006 Jan; 363(1-2):61-70. PubMed ID: 16122721 [TBL] [Abstract][Full Text] [Related]
12. Affinity capture and recovery of DNA at femtomolar concentrations with peptide nucleic acid probes. Chandler DP; Stults JR; Anderson KK; Cebula S; Schuck BL; Brockman FJ Anal Biochem; 2000 Aug; 283(2):241-9. PubMed ID: 10906245 [TBL] [Abstract][Full Text] [Related]
13. Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. Ali M; Neumann R; Ensinger W ACS Nano; 2010 Dec; 4(12):7267-74. PubMed ID: 21082785 [TBL] [Abstract][Full Text] [Related]
14. Application of fluorescence melting curve analysis for dual DNA detection using single peptide nucleic acid probe. Ahn JJ; Lee SY; Hong JY; Kim Y; Kim GW; Hwang SY Biotechnol Prog; 2015; 31(3):730-5. PubMed ID: 25644129 [TBL] [Abstract][Full Text] [Related]
15. Artificial site-specific DNA-nicking system based on common restriction enzyme assisted by PNA openers. Kuhn H; Hu Y; Frank-Kamenetskii MD; Demidov VV Biochemistry; 2003 May; 42(17):4985-92. PubMed ID: 12718541 [TBL] [Abstract][Full Text] [Related]
16. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Kiesling T; Cox K; Davidson EA; Dretchen K; Grater G; Hibbard S; Lasken RS; Leshin J; Skowronski E; Danielsen M Nucleic Acids Res; 2007; 35(18):e117. PubMed ID: 17827214 [TBL] [Abstract][Full Text] [Related]
17. Bivalent Display of Dicysteine on Peptide Nucleic Acids for Homogenous DNA/RNA Detection through in Situ Fluorescence Labelling. Fang GM; Seitz O Chembiochem; 2017 Jan; 18(2):189-194. PubMed ID: 27883258 [TBL] [Abstract][Full Text] [Related]
18. Detection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes. Kenny JH; Zhou Y; Schriefer ME; Bearden SW J Microbiol Methods; 2008 Oct; 75(2):293-301. PubMed ID: 18655809 [TBL] [Abstract][Full Text] [Related]
19. Homogeneous detection of single rolling circle replication products. Blab GA; Schmidt T; Nilsson M Anal Chem; 2004 Jan; 76(2):495-8. PubMed ID: 14719904 [TBL] [Abstract][Full Text] [Related]
20. Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe. Nakada Y; Nakaba S; Matsunaga H; Funada R; Yoshida M Biosci Biotechnol Biochem; 2013; 77(2):405-8. PubMed ID: 23391931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]