These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24026819)

  • 21. Allodynia mediated by C-tactile afferents in human hairy skin.
    Nagi SS; Rubin TK; Chelvanayagam DK; Macefield VG; Mahns DA
    J Physiol; 2011 Aug; 589(Pt 16):4065-75. PubMed ID: 21727219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human tactile detection thresholds: modification by inputs from specific tactile receptor classes.
    Ferrington DG; Nail BS; Rowe M
    J Physiol; 1977 Nov; 272(2):415-33. PubMed ID: 592198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor.
    Scheibert J; Leurent S; Prevost A; Debrégeas G
    Science; 2009 Mar; 323(5920):1503-6. PubMed ID: 19179493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vibrotactile difference thresholds: effects of vibration frequency, vibration magnitude, contact area, and body location.
    Forta NG; Griffin MJ; Morioka M
    Somatosens Mot Res; 2012; 29(1):28-37. PubMed ID: 22416802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peripheral vs. central determinants of vibrotactile adaptation.
    Klöcker A; Gueorguiev D; Thonnard JL; Mouraux A
    J Neurophysiol; 2016 Feb; 115(2):685-91. PubMed ID: 26581868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human cutaneous sensors on the sole of the foot: altered sensitivity and recovery time after whole body vibration.
    Sonza A; Maurer C; Achaval M; Zaro MA; Nigg BM
    Neurosci Lett; 2013 Jan; 533():81-5. PubMed ID: 23201635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical allodynia in human glabrous skin mediated by low-threshold cutaneous mechanoreceptors with unmyelinated fibres.
    Nagi SS; Mahns DA
    Exp Brain Res; 2013 Nov; 231(2):139-51. PubMed ID: 23955107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perceived intensity of vibrotactile stimuli: the role of mechanoreceptive channels.
    Hollins M; Roy EA
    Somatosens Mot Res; 1996; 13(3-4):273-86. PubMed ID: 9110430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perceived pitch of vibrotactile stimuli: effects of vibration amplitude, and implications for vibration frequency coding.
    Morley JW; Rowe MJ
    J Physiol; 1990 Dec; 431():403-16. PubMed ID: 2100311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of surface wave propagation on neural responses to vibration in primate glabrous skin.
    Manfredi LR; Baker AT; Elias DO; Dammann JF; Zielinski MC; Polashock VS; Bensmaia SJ
    PLoS One; 2012; 7(2):e31203. PubMed ID: 22348055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-frequency whisker vibration is encoded by phase-locked responses of neurons in the rat's barrel cortex.
    Ewert TA; Vahle-Hinz C; Engel AK
    J Neurosci; 2008 May; 28(20):5359-68. PubMed ID: 18480292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Somatosensory interactions reveal feature-dependent computations.
    Rahman MS; Yau JM
    J Neurophysiol; 2019 Jul; 122(1):5-21. PubMed ID: 30969894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic cues for whisker-based object localization: An analytical solution to vibration during active whisker touch.
    Vaxenburg R; Wyche I; Svoboda K; Efros AL; Hires SA
    PLoS Comput Biol; 2018 Mar; 14(3):e1006032. PubMed ID: 29584719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Four channels mediate the mechanical aspects of touch.
    Bolanowski SJ; Gescheider GA; Verrillo RT; Checkosky CM
    J Acoust Soc Am; 1988 Nov; 84(5):1680-94. PubMed ID: 3209773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-level static lip force control does not alter vibrotactile detection thresholds in the human orofacial system.
    Andreatta RD; Davidow JH; Scott AT
    Exp Brain Res; 2003 Aug; 151(4):548-52. PubMed ID: 12838380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of tactile afferent fibers in the hand of the marmoset monkey.
    Coleman GT; Bahramali H; Zhang HQ; Rowe MJ
    J Neurophysiol; 2001 May; 85(5):1793-804. PubMed ID: 11352997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Movement-related modulation of vibrotactile detection thresholds in the human orofacial system.
    Andreatta RD; Barlow SM
    Exp Brain Res; 2003 Mar; 149(1):75-82. PubMed ID: 12592505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Somatosensory Psychophysical Losses in Inhabitants of Riverside Communities of the Tapajós River Basin, Amazon, Brazil: Exposure to Methylmercury Is Possibly Involved.
    Khoury ED; Souza Gda S; da Costa CA; de Araújo AA; de Oliveira CS; Silveira LC; Pinheiro Mda C
    PLoS One; 2015; 10(12):e0144625. PubMed ID: 26658153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibrotaction and texture perception.
    Hollins M; Bensmaïa SJ; Roy EA
    Behav Brain Res; 2002 Sep; 135(1-2):51-6. PubMed ID: 12356433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Model for Estimating Tactile Sensation by Machine Learning Based on Vibration Information Obtained while Touching an Object.
    Ito F; Takemura K
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.