BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24026984)

  • 21. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.
    Lehr F; Morweiser M; Rosello Sastre R; Kruse O; Posten C
    J Biotechnol; 2012 Nov; 162(1):89-96. PubMed ID: 22750091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
    Melis A
    Planta; 2007 Oct; 226(5):1075-86. PubMed ID: 17721788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii.
    Volgusheva A; Styring S; Mamedov F
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7223-8. PubMed ID: 23589846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
    Torzillo G; Scoma A; Faraloni C; Giannelli L
    Crit Rev Biotechnol; 2015; 35(4):485-96. PubMed ID: 24754449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen fuel production by transgenic microalgae.
    Melis A; Seibert M; Ghirardi ML
    Adv Exp Med Biol; 2007; 616():110-21. PubMed ID: 18161495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoautotrophic cultures of Chlamydomonas reinhardtii: sulfur deficiency, anoxia, and hydrogen production.
    Grechanik V; Romanova A; Naydov I; Tsygankov A
    Photosynth Res; 2020 Mar; 143(3):275-286. PubMed ID: 31897856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii.
    Tolleter D; Ghysels B; Alric J; Petroutsos D; Tolstygina I; Krawietz D; Happe T; Auroy P; Adriano JM; Beyly A; Cuiné S; Plet J; Reiter IM; Genty B; Cournac L; Hippler M; Peltier G
    Plant Cell; 2011 Jul; 23(7):2619-30. PubMed ID: 21764992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analyses of H
    Volgusheva AA; Jokel M; Allahverdiyeva Y; Kukarskikh GP; Lukashev EP; Lambreva MD; Krendeleva TE; Antal TK
    Physiol Plant; 2017 Sep; 161(1):124-137. PubMed ID: 28386962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the transient fluorescence wave phenomenon that occurs during H2 production in Chlamydomonas reinhardtii.
    Krishna PS; Morello G; Mamedov F
    J Exp Bot; 2019 Nov; 70(21):6321-6336. PubMed ID: 31504725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii.
    Laurinavichene T; Tolstygina I; Tsygankov A
    J Biotechnol; 2004 Oct; 114(1-2):143-51. PubMed ID: 15464608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen Production by CO
    Grechanik VI; Bol'shakov MA; Tsygankov AA
    Biochemistry (Mosc); 2022 Oct; 87(10):1098-1108. PubMed ID: 36273878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Outdoor H₂ production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii.
    Scoma A; Giannelli L; Faraloni C; Torzillo G
    J Biotechnol; 2012 Feb; 157(4):620-7. PubMed ID: 21771618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water oxidation by photosystem II is the primary source of electrons for sustained H
    Kosourov S; Nagy V; Shevela D; Jokel M; Messinger J; Allahverdiyeva Y
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29629-29636. PubMed ID: 33168746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H₂ photoproduction in sulphur-deprived Chlamydomonas reinhardtii.
    Mignolet E; Lecler R; Ghysels B; Remacle C; Franck F
    J Biotechnol; 2012 Nov; 162(1):81-8. PubMed ID: 22842019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning photosynthetic oxygen for hydrogen evolution in synergistically integrated, sulfur deprived consortia of Coccomyxa chodatii and Rhodobium gokarnense at dim and high light.
    Danial AW; Abdel-Basset R; Abdel-Kader HAA
    Photosynth Res; 2023 Feb; 155(2):203-218. PubMed ID: 36418759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell.
    Rosenbaum M; Schröder U; Scholz F
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):753-6. PubMed ID: 15696280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis.
    Ghysels B; Godaux D; Matagne RF; Cardol P; Franck F
    PLoS One; 2013; 8(5):e64161. PubMed ID: 23717558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anaerobic phototrophic processes of hydrogen production by different strains of microalgae Chlamydomonas sp.
    Vargas SR; Santos PVD; Giraldi LA; Zaiat M; Calijuri MDC
    FEMS Microbiol Lett; 2018 May; 365(9):. PubMed ID: 29590395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H
    Nagy V; Vidal-Meireles A; Podmaniczki A; Szentmihályi K; Rákhely G; Zsigmond L; Kovács L; Tóth SZ
    Plant J; 2018 May; 94(3):548-561. PubMed ID: 29474754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion.
    Matthew T; Zhou W; Rupprecht J; Lim L; Thomas-Hall SR; Doebbe A; Kruse O; Hankamer B; Marx UC; Smith SM; Schenk PM
    J Biol Chem; 2009 Aug; 284(35):23415-25. PubMed ID: 19478077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.