BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24026984)

  • 41. [Photochemical activity of photosystem II and hydrogen photoproduction in sulfur-deprived Chlamydomonas reinhardtii mutants D1-R323D and D1-R323L].
    Makarova VV; Kosourov SN; Krendeleva TE; Kukarskikh GP; Ghirardi ML; Seibert M; Rubin AB
    Biofizika; 2005; 50(6):1070-8. PubMed ID: 16358786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired photosystem II photochemical activity.
    Makarova VV; Kosourov S; Krendeleva TE; Semin BK; Kukarskikh GP; Rubin AB; Sayre RT; Ghirardi ML; Seibert M
    Photosynth Res; 2007 Oct; 94(1):79-89. PubMed ID: 17701084
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of sulfur re-addition on H(2) photoproduction by sulfur-deprived green algae.
    Kosourov S; Makarova V; Fedorov AS; Tsygankov A; Seibert M; Ghirardi ML
    Photosynth Res; 2005 Sep; 85(3):295-305. PubMed ID: 16170632
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The relationship between the photosystem 2 activity and hydrogen production in sulfur deprived Chlamydomonas reinhardtii cells.
    Antal TK; Krendeleva TE; Laurinavichene TV; Makarova VV; Tsygankov AA; Seibert M; Rubin AB
    Dokl Biochem Biophys; 2001; 381():371-4. PubMed ID: 11813546
    [No Abstract]   [Full Text] [Related]  

  • 45. Chlamydomonas Flavodiiron Proteins Facilitate Acclimation to Anoxia During Sulfur Deprivation.
    Jokel M; Kosourov S; Battchikova N; Tsygankov AA; Aro EM; Allahverdiyeva Y
    Plant Cell Physiol; 2015 Aug; 56(8):1598-607. PubMed ID: 26063391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms.
    Meuser JE; Ananyev G; Wittig LE; Kosourov S; Ghirardi ML; Seibert M; Dismukes GC; Posewitz MC
    J Biotechnol; 2009 Jun; 142(1):21-30. PubMed ID: 19480944
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrogen photo-evolution upon S deprivation stepwise: an illustration of microalgal photosynthetic and metabolic flexibility and a step stone for future biotechnological methods of renewable H(2) production.
    Ghysels B; Franck F
    Photosynth Res; 2010 Nov; 106(1-2):145-54. PubMed ID: 20658193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen Production by a Chlamydomonas reinhardtii Strain with Inducible Expression of Photosystem II.
    Batyrova K; Hallenbeck PC
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28300765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scaling-up and proteomic analysis reveals photosynthetic and metabolic insights toward prolonged H
    Liu P; Ye DM; Chen M; Zhang J; Huang XH; Shen LL; Xia KK; Xu XJ; Xu YC; Guo YL; Wang YC; Huang F
    Photosynth Res; 2022 Dec; 154(3):397-411. PubMed ID: 35974136
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Treatment with NaHSO3 greatly enhances photobiological H2 production in the green alga Chlamydomonas reinhardtii.
    Ma W; Chen M; Wang L; Wei L; Wang Q
    Bioresour Technol; 2011 Sep; 102(18):8635-8. PubMed ID: 21489780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures.
    Laurinavichene TV; Kosourov SN; Ghirardi ML; Seibert M; Tsygankov AA
    J Biotechnol; 2008 Apr; 134(3-4):275-7. PubMed ID: 18294717
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii.
    Wykoff DD; Davies JP; Melis A; Grossman AR
    Plant Physiol; 1998 May; 117(1):129-39. PubMed ID: 9576782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Co-cultivation of Chlamydomonas reinhardtii with Azotobacter chroococcum improved H
    Xu L; Cheng X; Wu S; Wang Q
    Biotechnol Lett; 2017 May; 39(5):731-738. PubMed ID: 28432498
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acclimation to hypoxia in Chlamydomonas reinhardtii: can biophotolysis be the major trigger for long-term H2 production?
    Scoma A; Durante L; Bertin L; Fava F
    New Phytol; 2014 Dec; 204(4):890-900. PubMed ID: 25103459
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells.
    Chen M; Zhao L; Sun YL; Cui SX; Zhang LF; Yang B; Wang J; Kuang TY; Huang F
    J Proteome Res; 2010 Aug; 9(8):3854-66. PubMed ID: 20509623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sustained H₂ production in a Chlamydomonas reinhardtii D1 protein mutant.
    Scoma A; Krawietz D; Faraloni C; Giannelli L; Happe T; Torzillo G
    J Biotechnol; 2012 Feb; 157(4):613-9. PubMed ID: 21723340
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.
    Hemschemeier A; Happe T
    Biochim Biophys Acta; 2011 Aug; 1807(8):919-26. PubMed ID: 21376011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light Intensity is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii.
    Wei L; Yi J; Wang L; Huang T; Gao F; Wang Q; Ma W
    Plant Cell Physiol; 2017 Mar; 58(3):451-457. PubMed ID: 28064249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photosystem I fluorescence as a physiological indicator of hydrogen production in Chlamydomonas reinhardtii.
    Anandraj A; White S; Mutanda T
    Bioresour Technol; 2019 Feb; 273():313-319. PubMed ID: 30448683
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interplay between light intensity, chlorophyll concentration and culture mixing on the hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures grown in laboratory photobioreactors.
    Giannelli L; Scoma A; Torzillo G
    Biotechnol Bioeng; 2009 Sep; 104(1):76-90. PubMed ID: 19489016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.