These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 24027078)
1. Formation of a metal-organic framework with high surface area and gas uptake by breaking edges off truncated cuboctahedral cages. Yun R; Lu Z; Pan Y; You X; Bai J Angew Chem Int Ed Engl; 2013 Oct; 52(43):11282-5. PubMed ID: 24027078 [TBL] [Abstract][Full Text] [Related]
2. Tuning the topology and functionality of metal-organic frameworks by ligand design. Zhao D; Timmons DJ; Yuan D; Zhou HC Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015 [TBL] [Abstract][Full Text] [Related]
3. Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design. Prasad TK; Suh MP Chemistry; 2012 Jul; 18(28):8673-80. PubMed ID: 22678955 [TBL] [Abstract][Full Text] [Related]
4. Construction of a polyhedral metal-organic framework via a flexible octacarboxylate ligand for gas adsorption and separation. Lin ZJ; Huang YB; Liu TF; Li XY; Cao R Inorg Chem; 2013 Mar; 52(6):3127-32. PubMed ID: 23469758 [TBL] [Abstract][Full Text] [Related]
5. Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. Alezi D; Spanopoulos I; Tsangarakis C; Shkurenko A; Adil K; Belmabkhout Y; O Keeffe M; Eddaoudi M; Trikalitis PN J Am Chem Soc; 2016 Oct; 138(39):12767-12770. PubMed ID: 27615117 [TBL] [Abstract][Full Text] [Related]
6. Microporous La-metal-organic framework (MOF) with large surface area. Pal S; Bhunia A; Jana PP; Dey S; Möllmer J; Janiak C; Nayek HP Chemistry; 2015 Feb; 21(7):2789-92. PubMed ID: 25521611 [TBL] [Abstract][Full Text] [Related]
7. Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology. Zhang M; Chen YP; Bosch M; Gentle T; Wang K; Feng D; Wang ZU; Zhou HC Angew Chem Int Ed Engl; 2014 Jan; 53(3):815-8. PubMed ID: 24218230 [TBL] [Abstract][Full Text] [Related]
8. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. Parkes MV; Staiger CL; Perry JJ; Allendorf MD; Greathouse JA Phys Chem Chem Phys; 2013 Jun; 15(23):9093-106. PubMed ID: 23646358 [TBL] [Abstract][Full Text] [Related]
9. An interpenetrated metal-organic framework and its gas storage behavior: simulation and experiment. Frahm D; Fischer M; Hoffmann F; Fröba M Inorg Chem; 2011 Nov; 50(21):11055-63. PubMed ID: 21985253 [TBL] [Abstract][Full Text] [Related]
10. A highly porous interpenetrated metal-organic framework from the use of a novel nanosized organic linker. Manos MJ; Markoulides MS; Malliakas CD; Papaefstathiou GS; Chronakis N; Kanatzidis MG; Trikalitis PN; Tasiopoulos AJ Inorg Chem; 2011 Nov; 50(22):11297-9. PubMed ID: 22010964 [TBL] [Abstract][Full Text] [Related]
11. Highly porous ionic rht metal-organic framework for H2 and CO2 storage and separation: a molecular simulation study. Babarao R; Eddaoudi M; Jiang JW Langmuir; 2010 Jul; 26(13):11196-203. PubMed ID: 20504014 [TBL] [Abstract][Full Text] [Related]
12. Large H2 storage capacity of a new polyhedron-based metal-organic framework with high thermal and hygroscopic stability. Hong S; Oh M; Park M; Yoon JW; Chang JS; Lah MS Chem Commun (Camb); 2009 Sep; (36):5397-9. PubMed ID: 19724797 [TBL] [Abstract][Full Text] [Related]
13. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Gao WY; Chen Y; Niu Y; Williams K; Cash L; Perez PJ; Wojtas L; Cai J; Chen YS; Ma S Angew Chem Int Ed Engl; 2014 Mar; 53(10):2615-9. PubMed ID: 24497432 [TBL] [Abstract][Full Text] [Related]
14. Modifying cage structures in metal-organic polyhedral frameworks for H2 storage. Yan Y; Blake AJ; Lewis W; Barnett SA; Dailly A; Champness NR; Schröder M Chemistry; 2011 Sep; 17(40):11162-70. PubMed ID: 21898615 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the effect of functional groups on gas-uptake capacities by fixing the volumes of cages A and B and modifying the inner wall of cage C in rht-type MOFs. Zhao X; Sun D; Yuan S; Feng S; Cao R; Yuan D; Wang S; Dou J; Sun D Inorg Chem; 2012 Oct; 51(19):10350-5. PubMed ID: 22988971 [TBL] [Abstract][Full Text] [Related]
16. Channel partition into nanoscale polyhedral cages of a triple-self-interpenetrated metal-organic framework with high CO2 uptake. Chen SQ; Zhai QG; Li SN; Jiang YC; Hu MC Inorg Chem; 2015 Jan; 54(1):10-2. PubMed ID: 25494676 [TBL] [Abstract][Full Text] [Related]
18. Mesoporous Cages in Chemically Robust MOFs Created by a Large Number of Vertices with Reduced Connectivity. Liu Q; Song Y; Ma Y; Zhou Y; Cong H; Wang C; Wu J; Hu G; O'Keeffe M; Deng H J Am Chem Soc; 2019 Jan; 141(1):488-496. PubMed ID: 30449084 [TBL] [Abstract][Full Text] [Related]
19. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. Walton KS; Snurr RQ J Am Chem Soc; 2007 Jul; 129(27):8552-6. PubMed ID: 17580944 [TBL] [Abstract][Full Text] [Related]
20. Selective gas adsorption and separation in metal-organic frameworks. Li JR; Kuppler RJ; Zhou HC Chem Soc Rev; 2009 May; 38(5):1477-504. PubMed ID: 19384449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]