BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24027216)

  • 1. Structural insights into incorporation of norbornene amino acids for click modification of proteins.
    Schneider S; Gattner MJ; Vrabel M; Flügel V; López-Carrillo V; Prill S; Carell T
    Chembiochem; 2013 Nov; 14(16):2114-8. PubMed ID: 24027216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction.
    Kaya E; Vrabel M; Deiml C; Prill S; Fluxa VS; Carell T
    Angew Chem Int Ed Engl; 2012 Apr; 51(18):4466-9. PubMed ID: 22438179
    [No Abstract]   [Full Text] [Related]  

  • 3. Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase.
    Yanagisawa T; Ishii R; Fukunaga R; Kobayashi T; Sakamoto K; Yokoyama S
    J Mol Biol; 2008 May; 378(3):634-52. PubMed ID: 18387634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase.
    Yanagisawa T; Kuratani M; Seki E; Hino N; Sakamoto K; Yokoyama S
    Cell Chem Biol; 2019 Jul; 26(7):936-949.e13. PubMed ID: 31031143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
    Kobayashi T; Yanagisawa T; Sakamoto K; Yokoyama S
    J Mol Biol; 2009 Feb; 385(5):1352-60. PubMed ID: 19100747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving the N-Terminal Domain of Pyrrolysyl-tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids.
    Sharma V; Zeng Y; Wang WW; Qiao Y; Kurra Y; Liu WR
    Chembiochem; 2018 Jan; 19(1):26-30. PubMed ID: 29096043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation.
    Kavran JM; Gundllapalli S; O'Donoghue P; Englert M; Söll D; Steitz TA
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11268-73. PubMed ID: 17592110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase.
    Suzuki T; Miller C; Guo LT; Ho JML; Bryson DI; Wang YS; Liu DR; Söll D
    Nat Chem Biol; 2017 Dec; 13(12):1261-1266. PubMed ID: 29035363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo.
    Katayama H; Nozawa K; Nureki O; Nakahara Y; Hojo H
    Biosci Biotechnol Biochem; 2012; 76(1):205-8. PubMed ID: 22232266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification.
    Yanagisawa T; Ishii R; Fukunaga R; Kobayashi T; Sakamoto K; Yokoyama S
    Chem Biol; 2008 Nov; 15(11):1187-97. PubMed ID: 19022179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids.
    Takimoto JK; Dellas N; Noel JP; Wang L
    ACS Chem Biol; 2011 Jul; 6(7):733-43. PubMed ID: 21545173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of furan-amino acid recognition by a polyspecific aminoacyl-tRNA-synthetase and its genetic encoding in human cells.
    Schmidt MJ; Weber A; Pott M; Welte W; Summerer D
    Chembiochem; 2014 Aug; 15(12):1755-60. PubMed ID: 24737732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the site-specific incorporation of lysine derivatives into proteins.
    Flügel V; Vrabel M; Schneider S
    PLoS One; 2014; 9(4):e96198. PubMed ID: 24760130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity.
    Herring S; Ambrogelly A; Gundllapalli S; O'Donoghue P; Polycarpo CR; Söll D
    FEBS Lett; 2007 Jul; 581(17):3197-203. PubMed ID: 17582401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel crystal form of pyrrolysyl-tRNA synthetase reveals the pre- and post-aminoacyl-tRNA synthesis conformational states of the adenylate and aminoacyl moieties and an asparagine residue in the catalytic site.
    Yanagisawa T; Sumida T; Ishii R; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2013 Jan; 69(Pt 1):5-15. PubMed ID: 23275158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion.
    Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T
    ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.
    Polycarpo CR; Herring S; Bérubé A; Wood JL; Söll D; Ambrogelly A
    FEBS Lett; 2006 Dec; 580(28-29):6695-700. PubMed ID: 17126325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrrolysine Amber Stop-Codon Suppression: Development and Applications.
    Brabham R; Fascione MA
    Chembiochem; 2017 Oct; 18(20):1973-1983. PubMed ID: 28758366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liposome-Based in Vitro Evolution of Aminoacyl-tRNA Synthetase for Enhanced Pyrrolysine Derivative Incorporation.
    Uyeda A; Watanabe T; Kato Y; Watanabe H; Yomo T; Hohsaka T; Matsuura T
    Chembiochem; 2015 Aug; 16(12):1797-802. PubMed ID: 26052693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction.
    Lang K; Davis L; Torres-Kolbus J; Chou C; Deiters A; Chin JW
    Nat Chem; 2012 Feb; 4(4):298-304. PubMed ID: 22437715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.