These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24027216)

  • 21. Structures of
    Gottfried-Lee I; Perona JJ; Karplus PA; Mehl RA; Cooley RB
    ACS Chem Biol; 2022 Dec; 17(12):3470-3477. PubMed ID: 36395426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency.
    Williams TL; Iskandar DJ; Nödling AR; Tan Y; Luk LYP; Tsai YH
    Amino Acids; 2021 Jan; 53(1):89-96. PubMed ID: 33331978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids.
    Fan C; Xiong H; Reynolds NM; Söll D
    Nucleic Acids Res; 2015 Dec; 43(22):e156. PubMed ID: 26250114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine.
    Gaston MA; Zhang L; Green-Church KB; Krzycki JA
    Nature; 2011 Mar; 471(7340):647-50. PubMed ID: 21455182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine.
    Polycarpo C; Ambrogelly A; Bérubé A; Winbush SM; McCloskey JA; Crain PF; Wood JL; Söll D
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12450-4. PubMed ID: 15314242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Making proteins with unnatural amino acids: the first engineered aminoacyl-tRNA synthetase revisited.
    Kast P
    Chembiochem; 2011 Nov; 12(16):2395-8. PubMed ID: 21953917
    [No Abstract]   [Full Text] [Related]  

  • 27. Specificity of pyrrolysyl-tRNA synthetase for pyrrolysine and pyrrolysine analogs.
    Li WT; Mahapatra A; Longstaff DG; Bechtel J; Zhao G; Kang PT; Chan MK; Krzycki JA
    J Mol Biol; 2009 Jan; 385(4):1156-64. PubMed ID: 19063902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic encoding of the post-translational modification 2-hydroxyisobutyryl-lysine.
    Knight WA; Cropp TA
    Org Biomol Chem; 2015 Jun; 13(23):6479-81. PubMed ID: 25999185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis.
    Baumann T; Exner M; Budisa N
    Adv Biochem Eng Biotechnol; 2018; 162():1-19. PubMed ID: 27783132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a Methanosarcina acetivorans mutant unable to translate UAG as pyrrolysine.
    Mahapatra A; Patel A; Soares JA; Larue RC; Zhang JK; Metcalf WW; Krzycki JA
    Mol Microbiol; 2006 Jan; 59(1):56-66. PubMed ID: 16359318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site Specific Lysine Acetylation of Histones for Nucleosome Reconstitution using Genetic Code Expansion in Escherichia coli.
    Rowlett CM; Liu WR
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33427240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expanding the library and substrate diversity of the pyrrolysyl-tRNA synthetase to incorporate unnatural amino acids containing conjugated rings.
    Lacey VK; Louie GV; Noel JP; Wang L
    Chembiochem; 2013 Nov; 14(16):2100-5. PubMed ID: 24019075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA.
    Srinivasan G; James CM; Krzycki JA
    Science; 2002 May; 296(5572):1459-62. PubMed ID: 12029131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of pyrrolysyl-tRNA synthetase from the methanogenic archaeon Methanosarcina mazei.
    Yanagisawa T; Ishii R; Fukunaga R; Nureki O; Yokoyama S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Oct; 62(Pt 10):1031-3. PubMed ID: 17012805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity.
    Stokes AL; Miyake-Stoner SJ; Peeler JC; Nguyen DP; Hammer RP; Mehl RA
    Mol Biosyst; 2009 Sep; 5(9):1032-8. PubMed ID: 19668869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid Identification of Functional Pyrrolysyl-tRNA Synthetases via Fluorescence-Activated Cell Sorting.
    Lin AE; Lin Q
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30577609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporation of Amino Acids with Long-Chain Terminal Olefins into Proteins.
    Exner MP; Köhling S; Rivollier J; Gosling S; Srivastava P; Palyancheva ZI; Herdewijn P; Heck MP; Rademann J; Budisa N
    Molecules; 2016 Feb; 21(3):287. PubMed ID: 26938510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The direct genetic encoding of pyrrolysine.
    Krzycki JA
    Curr Opin Microbiol; 2005 Dec; 8(6):706-12. PubMed ID: 16256420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimized plasmid systems for the incorporation of multiple different unnatural amino acids by evolved orthogonal ribosomes.
    Lammers C; Hahn LE; Neumann H
    Chembiochem; 2014 Aug; 15(12):1800-4. PubMed ID: 24890611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiol-yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-L-lysine analogue.
    Li Y; Pan M; Li Y; Huang Y; Guo Q
    Org Biomol Chem; 2013 Apr; 11(16):2624-9. PubMed ID: 23450369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.