These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24027529)

  • 21. 'Human paced' walking: followers adopt stride time dynamics of leaders.
    Marmelat V; Delignières D; Torre K; Beek PJ; Daffertshofer A
    Neurosci Lett; 2014 Apr; 564():67-71. PubMed ID: 24548624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Persistent fluctuations in stride intervals under fractal auditory stimulation.
    Marmelat V; Torre K; Beek PJ; Daffertshofer A
    PLoS One; 2014; 9(3):e91949. PubMed ID: 24651455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Autocorrelated Rhythmic Auditory Stimulations on Parkinson's Disease Gait Variability: Comparison With Other Auditory Rhythm Variabilities and Perspectives.
    Lheureux A; Warlop T; Cambier C; Chemin B; Stoquart G; Detrembleur C; Lejeune T
    Front Physiol; 2020; 11():601721. PubMed ID: 33424625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries.
    Terrier P; Luthi F; Dériaz O
    BMC Musculoskelet Disord; 2013 Mar; 14():94. PubMed ID: 23496924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fractal analysis of gait in people with Parkinson's disease: three minutes is not enough.
    Marmelat V; Meidinger RL
    Gait Posture; 2019 May; 70():229-234. PubMed ID: 30909002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of rhythmic sensory cues on the temporal dynamics of human gait.
    Sejdić E; Fu Y; Pak A; Fairley JA; Chau T
    PLoS One; 2012; 7(8):e43104. PubMed ID: 22927946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.
    Rhea CK; Kiefer AW; D'Andrea SE; Warren WH; Aaron RK
    Hum Mov Sci; 2014 Aug; 36():20-34. PubMed ID: 24911782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson's disease.
    Dotov DG; Bayard S; Cochen de Cock V; Geny C; Driss V; Garrigue G; Bardy B; Dalla Bella S
    Gait Posture; 2017 Jan; 51():64-69. PubMed ID: 27710836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparable Stride Time Fractal Dynamics and Gait Adaptability in Active Young and Older Adults Under Normal and Asymmetric Walking.
    Ducharme SW; Kent JA; van Emmerik REA
    Front Physiol; 2019; 10():1318. PubMed ID: 31708794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Introducing Statistical Persistence Decay: A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait.
    Raffalt PC; Yentes JM
    Ann Biomed Eng; 2018 Jan; 46(1):60-70. PubMed ID: 28948419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Walking at the preferred stride frequency maximizes local dynamic stability of knee motion.
    Russell DM; Haworth JL
    J Biomech; 2014 Jan; 47(1):102-8. PubMed ID: 24210850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synchronization dynamics modulates stride-to-stride fluctuations when walking to an invariant but not to a fractal-like stimulus.
    Vaz JR; Groff BR; Rowen DA; Knarr BA; Stergiou N
    Neurosci Lett; 2019 Jun; 704():28-35. PubMed ID: 30922850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A single bout of resistance exercise does not affect nonlinear dynamics of lower extremity kinematics during treadmill walking.
    Nessler JA; Huynh H; McDougal M
    Gait Posture; 2011 Jun; 34(2):285-7. PubMed ID: 21570292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted Rhythmic Auditory Cueing During Treadmill and Overground Gait for Individuals With Parkinson Disease: A Case Series.
    Sherron MA; Stevenson SA; Browner NM; Lewek MD
    J Neurol Phys Ther; 2020 Oct; 44(4):268-274. PubMed ID: 32459723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is slow walking more stable?
    Bruijn SM; van Dieën JH; Meijer OG; Beek PJ
    J Biomech; 2009 Jul; 42(10):1506-1512. PubMed ID: 19446294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of co-regulation of local structure and magnitude of stride time variability using a new local detrended fluctuation analysis.
    Ihlen EA; Vereijken B
    Gait Posture; 2014; 39(1):466-71. PubMed ID: 24054349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Walking in an unstable environment: strategies used by transtibial amputees to prevent falling during gait.
    Hak L; van Dieën JH; van der Wurff P; Prins MR; Mert A; Beek PJ; Houdijk H
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2186-93. PubMed ID: 23916618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Load Magnitude and Locomotion Pattern Alter Locomotor System Function in Healthy Young Adult Women.
    Krajewski KT; Dever DE; Johnson CC; Mi Q; Simpson RJ; Graham SM; Moir GL; Ahamed NU; Flanagan SD; Anderst WJ; Connaboy C
    Front Bioeng Biotechnol; 2020; 8():582219. PubMed ID: 33042981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of sampling frequency on fractal fluctuations during treadmill walking.
    Marmelat V; Duncan A; Meltz S
    PLoS One; 2019; 14(11):e0218908. PubMed ID: 31697684
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reliability of the walking speed and gait dynamics variables while walking on a feedback-controlled treadmill.
    Choi JS; Kang DW; Seo JW; Tack GR
    J Biomech; 2015 May; 48(7):1336-9. PubMed ID: 25798762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.