These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2402759)

  • 1. Histidine-21 is involved in diphtheria toxin NAD+ binding.
    Papini E; Schiavo G; Rappuoli R; Montecucco C
    Toxicon; 1990; 28(6):631-5. PubMed ID: 2402759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histidine 21 is at the NAD+ binding site of diphtheria toxin.
    Papini E; Schiavo G; SandonĂ¡ D; Rappuoli R; Montecucco C
    J Biol Chem; 1989 Jul; 264(21):12385-8. PubMed ID: 2526125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR; Huang K; Wilson BA; Papini E; Covacci A; Collier RJ
    Biochemistry; 1994 May; 33(17):5155-61. PubMed ID: 8172890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation and fusion of lipid vesicles induced by diphtheria toxin at low pH: possible involvement of the P site and the NAD+ binding site.
    Cabiaux V; Vandenbranden M; Falmagne P; Ruysschaert JM
    Biosci Rep; 1985 Mar; 5(3):243-50. PubMed ID: 4016224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD.
    Carroll SF; Collier RJ
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3307-11. PubMed ID: 6145155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence characterization of the low pH-induced change in diphtheria toxin conformation: effect of salt.
    Blewitt MG; Chao JM; McKeever B; Sarma R; London E
    Biochem Biophys Res Commun; 1984 Apr; 120(1):286-90. PubMed ID: 6712698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active-site mutations of diphtheria toxin. Tryptophan 50 is a major determinant of NAD affinity.
    Wilson BA; Blanke SR; Reich KA; Collier RJ
    J Biol Chem; 1994 Sep; 269(37):23296-301. PubMed ID: 8083236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine 65 is photolabeled by 8-azidoadenine and 8-azidoadenosine at the NAD binding site of diphtheria toxin.
    Papini E; Santucci A; Schiavo G; Domenighini M; Neri P; Rappuoli R; Montecucco C
    J Biol Chem; 1991 Feb; 266(4):2494-8. PubMed ID: 1990001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of diphtheria toxin by NAD.
    Gill DM; Steinhaus DM
    J Hyg Epidemiol Microbiol Immunol; 1974; 18(3):316-23. PubMed ID: 4371004
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration.
    Blewitt MG; Chung LA; London E
    Biochemistry; 1985 Sep; 24(20):5458-64. PubMed ID: 4074708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide.
    Bell CE; Eisenberg D
    Adv Exp Med Biol; 1997; 419():35-43. PubMed ID: 9193634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Nucleotide binding of diphtheria toxin and its fragment A].
    Michel A; Dirkx J
    Arch Int Physiol Biochim; 1973 Sep; 81(3):591. PubMed ID: 4127516
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of the conformation, hydrophobicity, and model membrane interactions of diphtheria toxin to those of formaldehyde-treated toxin (diphtheria toxoid): formaldehyde stabilization of the native conformation inhibits changes that allow membrane insertion.
    Paliwal R; London E
    Biochemistry; 1996 Feb; 35(7):2374-9. PubMed ID: 8652579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the Diphtheria Toxin at Acidic pH: Implications for the Conformational Switching of the Translocation Domain.
    Rodnin MV; Kashipathy MM; Kyrychenko A; Battaile KP; Lovell S; Ladokhin AS
    Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33171806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diphtheria toxin: the effect of nitration and reductive methylation on enzymatic activity and toxicity.
    Beugnier N; Zanen J
    Biochim Biophys Acta; 1977 Jan; 490(1):225-34. PubMed ID: 65185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crucial role of H322 in folding of the diphtheria toxin T-domain into the open-channel state.
    Vargas-Uribe M; Rodnin MV; Kienker P; Finkelstein A; Ladokhin AS
    Biochemistry; 2013 May; 52(20):3457-63. PubMed ID: 23621842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational switching of the diphtheria toxin T domain.
    Rodnin MV; Kyrychenko A; Kienker P; Sharma O; Posokhov YO; Collier RJ; Finkelstein A; Ladokhin AS
    J Mol Biol; 2010 Sep; 402(1):1-7. PubMed ID: 20654627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural features of the binding site of cholera toxin inferred from fluorescence measurements.
    De Wolf M; Van Dessel G; Lagrou A; Hilderson HJ; Dierick W
    Biochim Biophys Acta; 1985 Nov; 832(2):165-74. PubMed ID: 4063375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin.
    Wang Y; Kachel K; Pablo L; London E
    Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid interaction of diphtheria toxin and mutants with altered fragment B. 1. Liposome aggregation and fusion.
    Papini E; Colonna R; Cusinato F; Montecucco C; Tomasi M; Rappuoli R
    Eur J Biochem; 1987 Dec; 169(3):629-35. PubMed ID: 3691511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.