These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24027614)

  • 41. Modification of single molecule fluorescence near metallic nanostructures.
    Fu Y; Lakowicz JR
    Laser Photon Rev; 2009 Feb; 3(1-2):221-232. PubMed ID: 31131065
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intrinsic fluorescence from DNA can be enhanced by metallic particles.
    Lakowicz JR; Shen B; Gryczynski Z; D'Auria S; Gryczynski I
    Biochem Biophys Res Commun; 2001 Sep; 286(5):875-9. PubMed ID: 11527380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence.
    Aslan K; Leonenko Z; Lakowicz JR; Geddes CD
    J Phys Chem B; 2005 Mar; 109(8):3157-62. PubMed ID: 16851335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO
    Yan Y; Meng L; Zhang W; Zheng Y; Wang S; Ren B; Yang Z; Yan X
    ACS Sens; 2017 Sep; 2(9):1369-1376. PubMed ID: 28836759
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Depolarization of surface-enhanced fluorescence: an approach to fluorescence polarization assays.
    Szmacinski H; Lakowicz JR
    Anal Chem; 2008 Aug; 80(16):6260-6. PubMed ID: 18627176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phenothiazine versus Phenoxazine: Structural Effects on the Photophysical Properties of NIR-II AIE Fluorophores.
    Li S; Cheng T; Yin C; Zhou S; Fan Q; Wu W; Jiang X
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43466-43473. PubMed ID: 32907323
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of low quantum yield fluorophores and improved imaging times using metallic nanoparticles.
    Estrada LC; Roberti MJ; Simoncelli S; Levi V; Aramendía PF; Martínez OE
    J Phys Chem B; 2012 Feb; 116(7):2306-13. PubMed ID: 22235949
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission.
    Lakowicz JR
    Anal Biochem; 2005 Feb; 337(2):171-94. PubMed ID: 15691498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date.
    Aslan K; Lakowicz JR; Geddes CD
    Anal Bioanal Chem; 2005 Jun; 382(4):926-33. PubMed ID: 15937664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single-molecule spectroscopic study of enhanced intrinsic phycoerythrin fluorescence on silver nanostructured surfaces.
    Ray K; Chowdhury MH; Lakowicz JR
    Anal Chem; 2008 Sep; 80(18):6942-8. PubMed ID: 18690697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence spectral properties of cyanine dye labeled DNA near metallic silver particles.
    Malicka J; Gryczynski I; Maliwal BP; Fang J; Lakowicz JR
    Biopolymers; 2003; 72(2):96-104. PubMed ID: 12583012
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles.
    Chen Y; Munechika K; Ginger DS
    Nano Lett; 2007 Mar; 7(3):690-6. PubMed ID: 17315937
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal-enhanced fluorescence: an emerging tool in biotechnology.
    Aslan K; Gryczynski I; Malicka J; Matveeva E; Lakowicz JR; Geddes CD
    Curr Opin Biotechnol; 2005 Feb; 16(1):55-62. PubMed ID: 15722016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy.
    Lakowicz JR; Ray K; Chowdhury M; Szmacinski H; Fu Y; Zhang J; Nowaczyk K
    Analyst; 2008 Oct; 133(10):1308-46. PubMed ID: 18810279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.
    Zhang T; Gao N; Li S; Lang MJ; Xu QH
    J Phys Chem Lett; 2015 Jun; 6(11):2043-9. PubMed ID: 26266500
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences.
    Deng W; Goldys EM
    Langmuir; 2012 Jul; 28(27):10152-63. PubMed ID: 22568517
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanowire-Intensified Metal-Enhanced Fluorescence in Hybrid Polymer-Plasmonic Electrospun Filaments.
    Camposeo A; Jurga R; Moffa M; Portone A; Cardarelli F; Della Sala F; Ciracì C; Pisignano D
    Small; 2018 May; 14(19):e1800187. PubMed ID: 29655227
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue-shift of the fluorescence peak.
    Sarkar S; Kanchibotla B; Nelson JD; Edwards JD; Anderson J; Tepper GC; Bandyopadhyay S
    Nano Lett; 2014 Oct; 14(10):5973-8. PubMed ID: 25233371
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conditionally activating optical contrast agent with enhanced sensitivity via gold nanoparticle plasmon energy transfer: feasibility study.
    Kang KA; Wang J
    J Nanobiotechnology; 2014 Dec; 12():56. PubMed ID: 25481683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.