These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 2402789)
1. Prevention of graft rejection in allogeneic bone marrow transplantation. II. Preclinical studies with three radiation protocols. Malilay GP; Sevenich EA; Filipovich AH Transplantation; 1990 Sep; 50(3):406-10. PubMed ID: 2402789 [TBL] [Abstract][Full Text] [Related]
2. Radiation sensitivity of resting and activated nonspecific cytotoxic cells of T lineage and NK lineage. Zarcone D; Tilden AB; Lane VG; Grossi CE Blood; 1989 May; 73(6):1615-21. PubMed ID: 2785411 [TBL] [Abstract][Full Text] [Related]
3. VLA-6 (CDw49f) is an important adhesion molecule in NK cell-mediated cytotoxicity following autologous or allogeneic bone marrow transplantation. Lowdell MW; Shamim F; Hamon M; Macdonald ID; Prentice HG Exp Hematol; 1995 Dec; 23(14):1530-4. PubMed ID: 8542943 [TBL] [Abstract][Full Text] [Related]
4. Use of lymphokine-activated killer cells to prevent bone marrow graft rejection and lethal graft-vs-host disease. Azuma E; Yamamoto H; Kaplan J J Immunol; 1989 Sep; 143(5):1524-9. PubMed ID: 2668409 [TBL] [Abstract][Full Text] [Related]
5. Natural killer and lymphokine-activated killer cell activities from human marrow precursors. II. The effects of IL-3 and IL-4. Keever CA; Pekle K; Gazzola MV; Collins NH; Bourhis JH; Gillio A J Immunol; 1989 Nov; 143(10):3241-9. PubMed ID: 2809200 [TBL] [Abstract][Full Text] [Related]
6. Effects of ultraviolet-B irradiation on human LAK and NK cytotoxic activity. Yaron I; Zakheim AR; Oluwole SF; Hardy MA Cell Immunol; 1995 Oct; 165(2):168-76. PubMed ID: 7553880 [TBL] [Abstract][Full Text] [Related]
7. Cytolytic activity of natural killer cells and lymphokine activated killer cells against hepatitis A virus infected fibroblasts. Baba M; Hasegawa H; Nakayabu M; Fukai K; Suzuki S J Clin Lab Immunol; 1993; 40(2):47-60. PubMed ID: 7932628 [TBL] [Abstract][Full Text] [Related]
8. Effects of ultraviolet B irradiation on human natural killer cell and lymphokine activated killer cell activity: therapeutic potential in bone marrow transplantation and tumor immunotherapy. Yaron I; Zakheim AR; Oluwole SF; Hardy MA Transplant Proc; 1995 Feb; 27(1):1379. PubMed ID: 7878918 [No Abstract] [Full Text] [Related]
9. Lymphokine-activated killer function following autologous bone marrow transplantation for refractory hematological malignancies. Higuchi CM; Thompson JA; Cox T; Lindgren CG; Buckner CD; Fefer A Cancer Res; 1989 Oct; 49(20):5509-13. PubMed ID: 2477142 [TBL] [Abstract][Full Text] [Related]
11. Effects of low dose total body irradiation (LDTBI) and recombinant human interleukin-2 in mice. Fourquet A; Teillaud JL; Lando D; Fridman WH Radiother Oncol; 1993 Mar; 26(3):219-25. PubMed ID: 8316651 [TBL] [Abstract][Full Text] [Related]
12. A partial conditioning approach to achieve mixed chimerism in the rat: depletion of host natural killer cells significantly reduces the amount of total body irradiation required for engraftment. Neipp M; Gammie JS; Exner BG; Li S; Chambers WH; Pham SM; Ildstad ST Transplantation; 1999 Aug; 68(3):369-78. PubMed ID: 10459540 [TBL] [Abstract][Full Text] [Related]
13. Preservation of lymphokine-activated killer activity following T cell depletion of human bone marrow. Drobyski WR; Piaskowski V; Ash RC; Casper JT; Truitt RL Transplantation; 1990 Oct; 50(4):625-32. PubMed ID: 1699309 [TBL] [Abstract][Full Text] [Related]
14. Immunologic changes after loco-regional radiotherapy and fractionated total body irradiation (TBI) in mice. De Ruysscher D; Waer M; Vandeputte M; van der Schueren E Int J Radiat Oncol Biol Phys; 1989 Dec; 17(6):1237-45. PubMed ID: 2532188 [TBL] [Abstract][Full Text] [Related]
15. Injury to autologous normal tissues and tumors mediated by lymphokine-activated killer (LAK) cells generated in vitro from peripheral blood mononuclear cells of glioblastoma patients. Fujimiya Y; Suzuki Y; Katakura R; Ohno T J Hematother; 1999 Feb; 8(1):29-37. PubMed ID: 10192299 [TBL] [Abstract][Full Text] [Related]
16. T cell depletion with anti-CD5 immunotoxin in histocompatible bone marrow transplantation. The correlation between residual CD5 negative T cells and subsequent graft-versus-host disease. Filipovich AH; Vallera D; McGlave P; Polich D; Gajl-Peczalska K; Haake R; Lasky L; Blazar B; Ramsay NK; Kersey J Transplantation; 1990 Sep; 50(3):410-5. PubMed ID: 1698319 [TBL] [Abstract][Full Text] [Related]
17. Prevention of graft rejection in allogeneic bone marrow transplantation: I. Preclinical studies with antithymocyte globulins. Malilay GP; Sevenich EA; Condie RM; Filipovich AH Bone Marrow Transplant; 1989 Jan; 4(1):107-12. PubMed ID: 2647173 [TBL] [Abstract][Full Text] [Related]
18. X-linked codominant genes control all types of non-major histocompatibility complex-restricted cytotoxicity. Tilden AB; Zarcone D; Prasthofer EF; Lane VG; Acton RT; Grossi CE Hum Immunol; 1991 Mar; 30(3):208-14. PubMed ID: 2055785 [TBL] [Abstract][Full Text] [Related]
19. IL-4 inhibits IL-2 induction of LAK cytotoxicity in lymphocytes from a variety of lymphoid tissues. Colquhoun SD; Economou JS; Shau H; Golub SH J Surg Res; 1993 Nov; 55(5):486-92. PubMed ID: 8231167 [TBL] [Abstract][Full Text] [Related]
20. Isolation of human NK cells and generation of LAK activity. Whiteside TL Curr Protoc Immunol; 2001 May; Chapter 7():Unit 7.7. PubMed ID: 18432847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]