These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24027995)

  • 21. Enhanced Cr(VI) removal from groundwater by Fe
    Yin W; Li Y; Wu J; Chen G; Jiang G; Li P; Gu J; Liang H; Liu C
    J Hazard Mater; 2017 Jun; 332():42-50. PubMed ID: 28279872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles.
    Chowdhury SR; Yanful EK; Pratt AR
    J Hazard Mater; 2012 Oct; 235-236():246-56. PubMed ID: 22902142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sustaining the efficiency of the Fe(0)/H
    Gheju M; Balcu I
    Chemosphere; 2019 Jan; 214():389-398. PubMed ID: 30268895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons.
    Yang JE; Kim JS; Ok YS; Yoo KR
    Water Sci Technol; 2007; 55(1-2):197-202. PubMed ID: 17305140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromium removal using resin supported nanoscale zero-valent iron.
    Fu F; Ma J; Xie L; Tang B; Han W; Lin S
    J Environ Manage; 2013 Oct; 128():822-7. PubMed ID: 23867839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Simultaneous remediation of Cr (VI) and p-NCB by nanosacle iron].
    Niu SF; Li CH; Lou ZH; Xu YP
    Huan Jing Ke Xue; 2009 Jan; 30(1):146-50. PubMed ID: 19353872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes.
    Lv X; Xu J; Jiang G; Xu X
    Chemosphere; 2011 Nov; 85(7):1204-9. PubMed ID: 22000744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: Performance and mechanism.
    Fu F; Cheng Z; Dionysiou DD; Tang B
    J Hazard Mater; 2015 Nov; 298():261-9. PubMed ID: 26073381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles.
    Wu P; Li S; Ju L; Zhu N; Wu J; Li P; Dang Z
    J Hazard Mater; 2012 Jun; 219-220():283-8. PubMed ID: 22521796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon.
    Hsu NH; Wang SL; Liao YH; Huang ST; Tzou YM; Huang YM
    J Hazard Mater; 2009 Nov; 171(1-3):1066-70. PubMed ID: 19619940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide.
    Li Y; Gao B; Wu T; Sun D; Li X; Wang B; Lu F
    Water Res; 2009 Jul; 43(12):3067-75. PubMed ID: 19439337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photocatalytic reduction of Cr(VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study.
    Siboni MS; Samadi MT; Yang JK; Lee SM
    Environ Technol; 2011 Oct; 32(13-14):1573-9. PubMed ID: 22329148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW; Blowes DW; Gillham RW
    J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.
    Durante C; Cuscov M; Isse AA; SandonĂ  G; Gennaro A
    Water Res; 2011 Feb; 45(5):2122-30. PubMed ID: 21255817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites.
    Stoica-Guzun A; Stroescu M; Jinga SI; Mihalache N; Botez A; Matei C; Berger D; Damian CM; Ionita V
    Int J Biol Macromol; 2016 Oct; 91():1062-72. PubMed ID: 27343705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism.
    Ye Y; Jiang Z; Xu Z; Zhang X; Wang D; Lv L; Pan B
    Water Res; 2017 Dec; 126():172-178. PubMed ID: 28946060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromium(VI) removal via reduction-sorption on bi-functional silica adsorbents.
    Zaitseva N; Zaitsev V; Walcarius A
    J Hazard Mater; 2013 Apr; 250-251():454-61. PubMed ID: 23500426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.