BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24028054)

  • 1. [Tolerance of Saccharomyces cerevisiae to monoterpenes--a review].
    Liu J; Zhou J; Chen J
    Wei Sheng Wu Xue Bao; 2013 Jun; 53(6):531-7. PubMed ID: 24028054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts.
    Carrau FM; Medina K; Boido E; Farina L; Gaggero C; Dellacassa E; Versini G; Henschke PA
    FEMS Microbiol Lett; 2005 Feb; 243(1):107-15. PubMed ID: 15668008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae.
    Brennan TC; Williams TC; Schulz BL; Palfreyman RW; Krömer JO; Nielsen LK
    Appl Environ Microbiol; 2015 May; 81(10):3316-25. PubMed ID: 25746998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae: a potential stereospecific reduction tool for biotransformation of mono- and sesquiterpenoids.
    Khor GK; Uzir MH
    Yeast; 2011 Feb; 28(2):93-107. PubMed ID: 20939023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P; Shahpiri A; Asadollahi MA; Momenbeik F; Partow S
    Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress.
    Liu J; Zhu Y; Du G; Zhou J; Chen J
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6467-75. PubMed ID: 23644769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae.
    Ayer A; Gourlay CW; Dawes IW
    FEMS Yeast Res; 2014 Feb; 14(1):60-72. PubMed ID: 24164795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.
    Martani F; Fossati T; Posteri R; Signori L; Porro D; Branduardi P
    Yeast; 2013 Sep; 30(9):365-78. PubMed ID: 23847041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    J Biochem; 2005 Oct; 138(4):391-7. PubMed ID: 16272133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory.
    Zhang C; Li M; Zhao GR; Lu W
    Microb Cell Fact; 2019 Sep; 18(1):160. PubMed ID: 31547812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dynamic control of ERG20 expression to improve production of monoterpenes by engineering Saccharomyces cerevisiae].
    Li RS; Wang D; Shi YS; Xu LP; Zhang XL; Wang K; Dai ZB
    Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(4):897-905. PubMed ID: 35285188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
    Scalcinati G; Otero JM; Van Vleet JR; Jeffries TW; Olsson L; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):582-97. PubMed ID: 22487265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation.
    Chu BC; Lee H
    Biotechnol Adv; 2007; 25(5):425-41. PubMed ID: 17524590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.
    Jongedijk E; Cankar K; Ranzijn J; van der Krol S; Bouwmeester H; Beekwilder J
    Yeast; 2015 Jan; 32(1):159-71. PubMed ID: 25164098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae.
    Costa V; Quintanilha A; Moradas-Ferreira P
    IUBMB Life; 2007; 59(4-5):293-8. PubMed ID: 17505968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different effects of sodium chloride preincubation on cadmium tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae.
    Ma N; Li C; Dong X; Wang D; Xu Y
    J Basic Microbiol; 2015 Aug; 55(8):1002-12. PubMed ID: 25721585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.
    Ma M; Liu ZL
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress.
    Liu J; Zhu Y; Du G; Zhou J; Chen J
    J Appl Microbiol; 2013 Feb; 114(2):482-91. PubMed ID: 23082823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering redox balance through cofactor systems.
    Chen X; Li S; Liu L
    Trends Biotechnol; 2014 Jun; 32(6):337-43. PubMed ID: 24794722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae.
    Liu J; Zhang W; Du G; Chen J; Zhou J
    J Biotechnol; 2013 Dec; 168(4):446-51. PubMed ID: 24161921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.