BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24028054)

  • 21. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production].
    Yang F; Cao M; Jin Y; Yang X; Tian S
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can the different heat shock response thresholds found in fermenting and respiring yeast cells be attributed to their differential redox states?
    Moraitis C; Curran BP
    Yeast; 2007 Aug; 24(8):653-66. PubMed ID: 17533621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Regulation of isoprenoid pathway for enhanced production of linalool in Saccharomyces cerevisiae].
    Sun M; Liu J; Du G; Zhou J; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2013 Jun; 29(6):751-9. PubMed ID: 24063235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis and production of sabinene: current state and perspectives.
    Cao Y; Zhang H; Liu H; Liu W; Zhang R; Xian M; Liu H
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1535-1544. PubMed ID: 29264773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diagnosis of cell death induced by methylglyoxal, a metabolite derived from glycolysis, in Saccharomyces cerevisiae.
    Maeta K; Mori K; Takatsume Y; Izawa S; Inoue Y
    FEMS Microbiol Lett; 2005 Feb; 243(1):87-92. PubMed ID: 15668005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monoterpenoid biosynthesis in Saccharomyces cerevisiae.
    Oswald M; Fischer M; Dirninger N; Karst F
    FEMS Yeast Res; 2007 May; 7(3):413-21. PubMed ID: 17096665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.
    Sasano Y; Takahashi S; Shima J; Takagi H
    Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.
    Kim IS; Kim YS; Yoon HS
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3519-33. PubMed ID: 23053072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties.
    Cakar ZP; Turanli-Yildiz B; Alkim C; Yilmaz U
    FEMS Yeast Res; 2012 Mar; 12(2):171-82. PubMed ID: 22136139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The feasibility of growing cells of Saccharomyces cerevisiae for citronellol production in a continuous-closed-gas-loop bioreactor (CCGLB).
    Arifin AA; Don MM; Uzir MH
    Bioresour Technol; 2011 Oct; 102(19):9318-20. PubMed ID: 21835610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae.
    de Oliveira IM; Zanotto-Filho A; Moreira JC; Bonatto D; Henriques JA
    Yeast; 2010 Feb; 27(2):89-102. PubMed ID: 19904831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic analysis of a Saccharomyces cerevisiae strain adapted for improved growth on glycerol: Implications for the development of yeast bioprocesses on glycerol.
    Ochoa-Estopier A; Lesage J; Gorret N; Guillouet SE
    Bioresour Technol; 2011 Jan; 102(2):1521-7. PubMed ID: 20869237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach.
    Poljsak B; Gazdag Z; Jenko-Brinovec S; Fujs S; Pesti M; Bélagyi J; Plesnicar S; Raspor P
    J Appl Toxicol; 2005; 25(6):535-48. PubMed ID: 16092082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae.
    Brace JL; Vanderweele DJ; Rudin CM
    Yeast; 2005 Jun; 22(8):641-52. PubMed ID: 16034825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol--a review.
    Laluce C; Schenberg AC; Gallardo JC; Coradello LF; Pombeiro-Sponchiado SR
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1908-26. PubMed ID: 22391693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast-surface expressed BVDV E2 protein induces a Th1/Th2 response in naïve T cells.
    Patterson R; Nerren J; Kogut M; Court P; Villarreal-Ramos B; Seyfert HM; Dalby P; Werling D
    Dev Comp Immunol; 2012 May; 37(1):107-14. PubMed ID: 22067741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges.
    Abbott DA; Zelle RM; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 Dec; 9(8):1123-36. PubMed ID: 19566685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of monoterpene synthesis in yeast.
    Fischer MJ; Meyer S; Claudel P; Bergdoll M; Karst F
    Biotechnol Bioeng; 2011 Aug; 108(8):1883-92. PubMed ID: 21391209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.