These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 24028107)

  • 1. Breit interaction effects in relativistic theory of the nuclear spin-rotation tensor.
    Aucar IA; Gómez SS; Giribet CG; Ruiz de Azúa MC
    J Chem Phys; 2013 Sep; 139(9):094112. PubMed ID: 24028107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X = H,F,Cl,Br,I) compounds.
    Aucar IA; Gómez SS; Melo JI; Giribet CC; Ruiz de Azúa MC
    J Chem Phys; 2013 Apr; 138(13):134107. PubMed ID: 23574208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degenerate Perturbation Theory for Electronic g Tensors: Leading-Order Relativistic Effects.
    Rinkevicius Z; de Almeida KJ; Oprea CI; Vahtras O; Ågren H; Ruud K
    J Chem Theory Comput; 2008 Nov; 4(11):1810-28. PubMed ID: 26620325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction.
    Coriani S; Helgaker T; Jørgensen P; Klopper W
    J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breit interaction contribution to parity violating potentials in chiral molecules containing light nuclei.
    Berger R
    J Chem Phys; 2008 Oct; 129(15):154105. PubMed ID: 19045174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourth-order relativistic corrections to electrical first-order properties using direct perturbation theory.
    Stopkowicz S; Gauss J
    J Chem Phys; 2011 May; 134(20):204106. PubMed ID: 21639423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei.
    Aucar IA; Gómez SS; Ruiz de Azúa MC; Giribet CG
    J Chem Phys; 2012 May; 136(20):204119. PubMed ID: 22667552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the relativistic molecular rotational g-tensor.
    Aucar IA; Gomez SS; Giribet CG; Ruiz de Azúa MC
    J Chem Phys; 2014 Nov; 141(19):194103. PubMed ID: 25416870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon and proton shielding tensors in methyl halides.
    Kantola AM; Lantto P; Vaara J; Jokisaari J
    Phys Chem Chem Phys; 2010 Mar; 12(11):2679-92. PubMed ID: 20200746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbational relativistic theory of electron spin resonance g-tensor.
    Manninen P; Vaara J; Ruud K
    J Chem Phys; 2004 Jul; 121(3):1258-65. PubMed ID: 15260666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formal relations connecting different approaches to calculate relativistic effects on molecular magnetic properties.
    Zaccari DG; Ruiz de Azúa MC; Melo JI; Giribet CG
    J Chem Phys; 2006 Feb; 124(5):054103. PubMed ID: 16468847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic shielding constants calculated by the infinite-order Douglas-Kroll-Hess method with electron-electron relativistic corrections.
    Seino J; Hada M
    J Chem Phys; 2010 May; 132(17):174105. PubMed ID: 20459154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relativistic effects on nuclear magnetic shielding constants in HX and CH3X (X=Br,I) based on the linear response within the elimination of small component approach.
    Melo JI; Ruiz de Azua MC; Giribet CG; Aucar GA; Provasi PF
    J Chem Phys; 2004 Oct; 121(14):6798-808. PubMed ID: 15473737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rovibrational effects on NMR shieldings in a heavy-element system: XeF2.
    Lantto P; Kangasvieri S; Vaara J
    J Chem Phys; 2012 Dec; 137(21):214309. PubMed ID: 23231233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).
    Demissie TB; Jaszuński M; Komorovsky S; Repisky M; Ruud K
    J Chem Phys; 2015 Oct; 143(16):164311. PubMed ID: 26520517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relativistic effects on group-12 metal nuclear shieldings.
    Roukala J; Maldonado AF; Vaara J; Aucar GA; Lantto P
    Phys Chem Chem Phys; 2011 Dec; 13(47):21016-25. PubMed ID: 22012267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.