BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24028926)

  • 1. Self-catalyzed MBE grown GaAs/GaAs(x)Sb(1-x) core-shell nanowires in ZB and WZ crystal structures.
    Ghalamestani SG; Munshi AM; Dheeraj DL; Fimland BO; Weman H; Dick KA
    Nanotechnology; 2013 Oct; 24(40):405601. PubMed ID: 24028926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate and Mg doping effects in GaAs nanowires.
    Kannappan P; Sedrine NB; Teixeira JP; Soares MR; Falcão BP; Correia MR; Cifuentes N; Viana ER; Moreira MVB; Ribeiro GM; de Oliveira AG; González JC; Leitão JP
    Beilstein J Nanotechnol; 2017; 8():2126-2138. PubMed ID: 29090114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling Variations in Electronic and Atomic Structures Due to Nanoscale Wurtzite and Zinc Blende Phase Separation in GaAs Nanowires.
    Zeng L; Olsson E
    Nano Lett; 2024 Jun; 24(22):6644-6650. PubMed ID: 38767455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Temperature In-Induced Holes Formation in Native-SiO
    R Reznik R; P Kotlyar K; O Gridchin V; V Ubyivovk E; V Federov V; I Khrebtov A; S Shevchuk D; E Cirlin G
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32764363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bending and reverse bending during the fabrication of novel GaAs/(In,Ga)As/GaAs core-shell nanowires monitored by
    Al Hassan A; AlHumaidi M; Kalt J; Schneider R; Müller E; Anjum T; Khadiev A; Novikov DV; Pietsch U; Baumbach T
    Nanotechnology; 2024 May; 35(29):. PubMed ID: 38631325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alloy formation during molecular beam epitaxy growth of Si-doped InAs nanowires on GaAs[111]B.
    Davydok A; Rieger T; Biermanns A; Saqib M; Grap T; Lepsa MI; Pietsch U
    J Appl Crystallogr; 2013 Aug; 46(Pt 4):893-897. PubMed ID: 24046494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Change Ge-Rich Ge-Sb-Te/Sb
    Kumar A; Cecchini R; Wiemer C; Mussi V; De Simone S; Calarco R; Scuderi M; Nicotra G; Longo M
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threefold rotational symmetry in hexagonally shaped core-shell (In,Ga)As/GaAs nanowires revealed by coherent X-ray diffraction imaging.
    Davtyan A; Krause T; Kriegner D; Al-Hassan A; Bahrami D; Mostafavi Kashani SM; Lewis RB; Küpers H; Tahraoui A; Geelhaar L; Hanke M; Leake SJ; Loffeld O; Pietsch U
    J Appl Crystallogr; 2017 Jun; 50(Pt 3):673-680. PubMed ID: 28656032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Wurtzite Structured GaAs Shells Around InAs Nanowire Cores.
    Paladugu M; Zou J; Guo YN; Zhang X; Joyce HJ; Gao Q; Tan HH; Jagadish C; Kim Y
    Nanoscale Res Lett; 2009 May; 4(8):846-849. PubMed ID: 20596432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-induced high ferromagnetic transition temperature of MnAs epilayer grown on GaAs (110).
    Xu P; Lu J; Chen L; Yan S; Meng H; Pan G; Zhao J
    Nanoscale Res Lett; 2011 Feb; 6(1):125. PubMed ID: 21711651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a zinc-blende-diamond order-disorder transition on the crystal, electronic, and vibrational structures of metastable (GaAs)1-x(Ge2)x alloys.
    Newman KE; Dow JD; Bunker BA; Abels LL; Raccah PM; Ugur S; Xue DZ; Kobayashi A
    Phys Rev B Condens Matter; 1989 Jan; 39(1):657-662. PubMed ID: 9947199
    [No Abstract]   [Full Text] [Related]  

  • 12. Surface reconstructions of zinc-blende GaN/GaAs(001) in plasma-assisted molecular-beam epitaxy.
    Brandt O; Yang H; Jenichen B; Suzuki Y; Däweritz L; Ploog KH
    Phys Rev B Condens Matter; 1995 Jul; 52(4):R2253-R2256. PubMed ID: 9981384
    [No Abstract]   [Full Text] [Related]  

  • 13. Reflectance anisotropy spectroscopy and reflection high-energy electron diffraction of submonolayer coverages of Si grown on GaAs(001) by molecular-beam epitaxy.
    Woolf DA; Rose KC; Rumberg J; Westwood DI; Reinhardt F; Morris SJ; Richter W; Williams RH
    Phys Rev B Condens Matter; 1995 Feb; 51(7):4691-4694. PubMed ID: 9979328
    [No Abstract]   [Full Text] [Related]  

  • 14. Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001).
    Pashley MD
    Phys Rev B Condens Matter; 1989 Nov; 40(15):10481-10487. PubMed ID: 9991596
    [No Abstract]   [Full Text] [Related]  

  • 15. Resonant photoluminescence studies of the growth-induced defects in GaAs grown by molecular beam epitaxy.
    Charbonneau S; McMullan WG; Thewalt ML
    Phys Rev B Condens Matter; 1988 Aug; 38(5):3587-3590. PubMed ID: 9946717
    [No Abstract]   [Full Text] [Related]  

  • 16. Domain structure in epitaxial metastable zinc-blende (GaAs)1-x(Ge2)x(001) alloys.
    Romano LT; Robertson IM; Greene JE; Sundgren JE
    Phys Rev B Condens Matter; 1987 Nov; 36(14):7523-7528. PubMed ID: 9942520
    [No Abstract]   [Full Text] [Related]  

  • 17. Optical properties of shallow defect-related acceptors in GaAs grown by molecular-beam epitaxy.
    Charbonneau S; Thewalt ML
    Phys Rev B Condens Matter; 1990 Apr; 41(12):8221-8228. PubMed ID: 9993145
    [No Abstract]   [Full Text] [Related]  

  • 18. Zeeman spectroscopy of the defect-induced bound-exciton lines in GaAs grown by molecular-beam epitaxy.
    Skolnick MS; Halliday DP; Tu CW
    Phys Rev B Condens Matter; 1988 Aug; 38(6):4165-4179. PubMed ID: 9946791
    [No Abstract]   [Full Text] [Related]  

  • 19. High-resolution spectroscopy of defect-bound excitons and acceptors in GaAs grown by molecular-beam epitaxy.
    Skolnick MS; Tu CW; Harris TD
    Phys Rev B Condens Matter; 1986 Jun; 33(12):8468-8474. PubMed ID: 9938245
    [No Abstract]   [Full Text] [Related]  

  • 20. Unusually strong excitonic absorption in molecular-beam-epitaxy-grown, chemically lifted GaAs thin films.
    Dell JM; Joyce MJ; Usher BF; Yoffe GW; Kemeny PC
    Phys Rev B Condens Matter; 1990 Nov; 42(15):9496-9500. PubMed ID: 9995187
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.