These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24029466)

  • 1. Sorting of a HaloTag protein that has only a signal peptide sequence into exocrine secretory granules without protein aggregation.
    Fujita-Yoshigaki J; Matsuki-Fukushima M; Yokoyama M; Katsumata-Kato O
    Am J Physiol Gastrointest Liver Physiol; 2013 Nov; 305(10):G685-96. PubMed ID: 24029466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A primary culture of parotid acinar cells retaining capacity for agonists-induced amylase secretion and generation of new secretory granules.
    Fujita-Yoshigaki J; Tagashira A; Yoshigaki T; Furuyama S; Sugiya H
    Cell Tissue Res; 2005 Jun; 320(3):455-64. PubMed ID: 15846515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching of cargo sorting from the constitutive to regulated secretory pathway by the addition of cystatin D sequence in salivary acinar cells.
    Fujita-Yoshigaki J; Yokoyama M; Katsumata-Kato O
    Am J Physiol Gastrointest Liver Physiol; 2020 Jul; 319(1):G74-G86. PubMed ID: 32538138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secretory proteins without a transport signal are retained in secretory granules during maturation in rat parotid acinar cells.
    Katsumata-Kato O; Yokoyama M; Matsuki-Fukushima M; Narita T; Sugiya H; Fujita-Yoshigaki J
    Arch Oral Biol; 2015 Apr; 60(4):642-9. PubMed ID: 25703816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isoproterenol increases sorting of parotid gland cargo proteins to the basolateral pathway.
    Venkatesh SG; Tan J; Gorr SU; Darling DS
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C558-65. PubMed ID: 17537806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential aggregation properties of secretory proteins that are stored in exocrine secretory granules of the pancreas and parotid glands.
    Venkatesh SG; Cowley DJ; Gorr SU
    Am J Physiol Cell Physiol; 2004 Feb; 286(2):C365-71. PubMed ID: 14576088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation of Rab26 to the amylase release from rat parotid acinar cells.
    Nashida T; Imai A; Shimomura H
    Arch Oral Biol; 2006 Feb; 51(2):89-95. PubMed ID: 16076461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorting and secretory pathways in exocrine cells.
    Castle JD
    Am J Respir Cell Mol Biol; 1990 Feb; 2(2):119-26. PubMed ID: 2407275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of cAMP-dependent protein kinase subunits along the secretory pathway in pancreatic and parotid acinar cells and accumulation of the catalytic subunit in parotid secretory granules following beta-adrenergic stimulation.
    Joachim S; Schwoch G
    Eur J Cell Biol; 1990 Feb; 51(1):76-84. PubMed ID: 2328739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parotid secretory granules: crossroads of secretory pathways and protein storage.
    Gorr SU; Venkatesh SG; Darling DS
    J Dent Res; 2005 Jun; 84(6):500-9. PubMed ID: 15914585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The secretory ability of newly formed secretory granules is regulated by pro-cathepsin B and amylase in parotid glands.
    Katsumata-Kato O; Yokoyama M; Fujita-Yoshigaki J
    Biochem Biophys Res Commun; 2023 Jul; 666():45-51. PubMed ID: 37178504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of VIP36 in the post-Golgi secretory pathway also of rat parotid acinar cells.
    Shimada O; Hara-Kuge S; Yamashita K; Tosaka-Shimada H; Yanchao L; Einan L; Atsumi S; Ishikawa H
    J Histochem Cytochem; 2003 Aug; 51(8):1057-63. PubMed ID: 12871987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The binding of VIP36 and alpha-amylase in the secretory vesicles via high-mannose type glycans.
    Hara-Kuge S; Seko A; Shimada O; Tosaka-Shimada H; Yamashita K
    Glycobiology; 2004 Aug; 14(8):739-44. PubMed ID: 15070860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Difference in distribution of membrane proteins between low- and high-density secretory granules in parotid acinar cells.
    Fujita-Yoshigaki J; Katsumata O; Matsuki M; Yoshigaki T; Furuyama S; Sugiya H
    Biochem Biophys Res Commun; 2006 May; 344(1):283-92. PubMed ID: 16630574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serglycin proteoglycan is sorted into zymogen granules of rat pancreatic acinar cells.
    Biederbick A; Licht A; Kleene R
    Eur J Cell Biol; 2003 Jan; 82(1):19-29. PubMed ID: 12602945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cysteine string protein in rat parotid acinar cells.
    Shimomura H; Imai A; Nashida T
    Arch Biochem Biophys; 2013 Oct; 538(1):1-5. PubMed ID: 23942053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor protein D52 controls trafficking of an apical endolysosomal secretory pathway in pancreatic acinar cells.
    Messenger SW; Thomas DD; Falkowski MA; Byrne JA; Gorelick FS; Groblewski GE
    Am J Physiol Gastrointest Liver Physiol; 2013 Sep; 305(6):G439-52. PubMed ID: 23868405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteoglycans support proper granule formation in pancreatic acinar cells.
    Aroso M; Agricola B; Hacker C; Schrader M
    Histochem Cell Biol; 2015 Oct; 144(4):331-46. PubMed ID: 26105026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transferrin secretory pathways in rat parotid acinar cells.
    Nashida T; Yoshie S; Imai A; Shimomura H
    Arch Biochem Biophys; 2009 Jul; 487(2):131-8. PubMed ID: 19464997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells.
    Imai A; Tsujimura M; Yoshie S; Fukuda M
    Biochem Biophys Res Commun; 2015 Jun; 461(3):469-74. PubMed ID: 25871792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.