BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 24029548)

  • 1. Distinct phenotypes in zebrafish models of human startle disease.
    Ganser LR; Yan Q; James VM; Kozol R; Topf M; Harvey RJ; Dallman JE
    Neurobiol Dis; 2013 Dec; 60():139-51. PubMed ID: 24029548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit.
    Hirata H; Saint-Amant L; Downes GB; Cui WW; Zhou W; Granato M; Kuwada JY
    Proc Natl Acad Sci U S A; 2005 Jun; 102(23):8345-50. PubMed ID: 15928085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual knock out of glycine receptor alpha subunits identifies a specific requirement of glra1 for motor function in zebrafish.
    Samarut E; Chalopin D; Riché R; Allard M; Liao M; Drapeau P
    PLoS One; 2019; 14(5):e0216159. PubMed ID: 31048868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease.
    Schaefer N; Berger A; van Brederode J; Zheng F; Zhang Y; Leacock S; Littau L; Jablonka S; Malhotra S; Topf M; Winter F; Davydova D; Lynch JW; Paige CJ; Alzheimer C; Harvey RJ; Villmann C
    J Neurosci; 2017 Aug; 37(33):7948-7961. PubMed ID: 28724750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission.
    Hirzel K; Müller U; Latal AT; Hülsmann S; Grudzinska J; Seeliger MW; Betz H; Laube B
    Neuron; 2006 Nov; 52(4):679-90. PubMed ID: 17114051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Functional Properties of Missense Mutations in the Glycine Receptor β Subunit in Startle Disease.
    Piro I; Eckes AL; Kasaragod VB; Sommer C; Harvey RJ; Schaefer N; Villmann C
    Front Mol Neurosci; 2021; 14():745275. PubMed ID: 34630038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defective glycinergic synaptic transmission in zebrafish motility mutants.
    Hirata H; Carta E; Yamanaka I; Harvey RJ; Kuwada JY
    Front Mol Neurosci; 2009; 2():26. PubMed ID: 20161699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GLRA1 null mutation in recessive hyperekplexia challenges the functional role of glycine receptors.
    Brune W; Weber RG; Saul B; von Knebel Doeberitz M; Grond-Ginsbach C; Kellerman K; Meinck HM; Becker CM
    Am J Hum Genet; 1996 May; 58(5):989-97. PubMed ID: 8651283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective escape behavior in DEAH-box RNA helicase mutants improved by restoring glycine receptor expression.
    Hirata H; Ogino K; Yamada K; Leacock S; Harvey RJ
    J Neurosci; 2013 Sep; 33(37):14638-44. PubMed ID: 24027265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GLRB is the third major gene of effect in hyperekplexia.
    Chung SK; Bode A; Cushion TD; Thomas RH; Hunt C; Wood SE; Pickrell WO; Drew CJ; Yamashita S; Shiang R; Leiz S; Longardt AC; Raile V; Weschke B; Puri RD; Verma IC; Harvey RJ; Ratnasinghe DD; Parker M; Rittey C; Masri A; Lingappa L; Howell OW; Vanbellinghen JF; Mullins JG; Lynch JW; Rees MI
    Hum Mol Genet; 2013 Mar; 22(5):927-40. PubMed ID: 23184146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB).
    Rees MI; Lewis TM; Kwok JB; Mortier GR; Govaert P; Snell RG; Schofield PR; Owen MJ
    Hum Mol Genet; 2002 Apr; 11(7):853-60. PubMed ID: 11929858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors.
    Wang CH; Hernandez CC; Wu J; Zhou N; Hsu HY; Shen ML; Wang YC; Macdonald RL; Wu DC
    J Neurosci; 2018 Mar; 38(11):2818-2831. PubMed ID: 29440552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Mechanism by Which Gain-of-function Mutations to the α1 Glycine Receptor Cause Hyperekplexia.
    Zhang Y; Bode A; Nguyen B; Keramidas A; Lynch JW
    J Biol Chem; 2016 Jul; 291(29):15332-41. PubMed ID: 27226610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the Glycine Receptor β Subunit in Synaptic Localization and Pathogenicity in Severe Startle Disease.
    Wiessler AL; Hasenmüller AS; Fuhl I; Mille C; Cortes Campo O; Reinhard N; Schenk J; Heinze KG; Schaefer N; Specht CG; Villmann C
    J Neurosci; 2024 Jan; 44(2):. PubMed ID: 37963764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glycinergic system in human startle disease: a genetic screening approach.
    Davies JS; Chung SK; Thomas RH; Robinson A; Hammond CL; Mullins JG; Carta E; Pearce BR; Harvey K; Harvey RJ; Rees MI
    Front Mol Neurosci; 2010; 3():8. PubMed ID: 20407582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycine receptor mouse mutants: model systems for human hyperekplexia.
    Schaefer N; Langlhofer G; Kluck CJ; Villmann C
    Br J Pharmacol; 2013 Nov; 170(5):933-52. PubMed ID: 23941355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The startle disease mutation α1S270T predicts shortening of glycinergic synaptic currents.
    Wu Z; Lape R; Jopp-Saile L; O'Callaghan BJ; Greiner T; Sivilotti LG
    J Physiol; 2020 Aug; 598(16):3417-3438. PubMed ID: 32445491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation.
    Wilkins ME; Caley A; Gielen MC; Harvey RJ; Smart TG
    J Physiol; 2016 Jul; 594(13):3589-607. PubMed ID: 27028707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical role for glycine transporters in hyperexcitability disorders.
    Harvey RJ; Carta E; Pearce BR; Chung SK; Supplisson S; Rees MI; Harvey K
    Front Mol Neurosci; 2008; 1():1. PubMed ID: 18946534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anxiety and Startle Phenotypes in
    Schaefer N; Signoret-Genest J; von Collenberg CR; Wachter B; Deckert J; Tovote P; Blum R; Villmann C
    Front Mol Neurosci; 2020; 13():152. PubMed ID: 32848605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.