BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24030822)

  • 21. An interaction involving an arginine residue in the cytoplasmic domain of the 5-HT3A receptor contributes to receptor desensitization mechanism.
    Hu XQ; Sun H; Peoples RW; Hong R; Zhang L
    J Biol Chem; 2006 Aug; 281(31):21781-21788. PubMed ID: 16754678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of aspartate 298 in mouse 5-HT3A receptor gating and modulation by extracellular Ca2+.
    Hu XQ; Lovinger DM
    J Physiol; 2005 Oct; 568(Pt 2):381-96. PubMed ID: 16096341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors.
    Kozuska JL; Paulsen IM; Belfield WJ; Martin IL; Cole DJ; Holt A; Dunn SM
    Br J Pharmacol; 2014 Apr; 171(7):1617-28. PubMed ID: 24283776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Importance of the C-terminus of the human 5-HT3A receptor subunit.
    Butler AS; Lindesay SA; Dover TJ; Kennedy MD; Patchell VB; Levine BA; Hope AG; Barnes NM
    Neuropharmacology; 2009 Jan; 56(1):292-302. PubMed ID: 18786552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The 5-HT3 receptor--the relationship between structure and function.
    Barnes NM; Hales TG; Lummis SC; Peters JA
    Neuropharmacology; 2009 Jan; 56(1):273-84. PubMed ID: 18761359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The L293 residue in transmembrane domain 2 of the 5-HT3A receptor is a molecular determinant of allosteric modulation by 5-hydroxyindole.
    Hu XQ; Lovinger DM
    Neuropharmacology; 2008 Jun; 54(8):1153-65. PubMed ID: 18436267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of nicotinic acetylcholine receptor β subunit cytoplasmic loops in acute desensitization and single-channel features.
    Liu Q; Kuo YP; Shen J; Lukas RJ; Wu J
    Neuroscience; 2015 Mar; 289():315-23. PubMed ID: 25536046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor.
    Peters JA; Hales TG; Lambert JJ
    Trends Pharmacol Sci; 2005 Nov; 26(11):587-94. PubMed ID: 16194573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rings of charge within the extracellular vestibule influence ion permeation of the 5-HT3A receptor.
    Livesey MR; Cooper MA; Lambert JJ; Peters JA
    J Biol Chem; 2011 May; 286(18):16008-17. PubMed ID: 21454663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel.
    Di Maio D; Chandramouli B; Brancato G
    PLoS One; 2015; 10(10):e0140258. PubMed ID: 26465896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The functional role of the αM4 transmembrane helix in the muscle nicotinic acetylcholine receptor probed through mutagenesis and coevolutionary analyses.
    Thompson MJ; Domville JA; Baenziger JE
    J Biol Chem; 2020 Aug; 295(32):11056-11067. PubMed ID: 32527728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacological and electrophysiological properties of the naturally occurring Pro391Arg variant of the human 5-HT3A receptor.
    Kurzwelly D; Barann M; Kostanian A; Combrink S; Bönisch H; Göthert M; Brüss M
    Pharmacogenetics; 2004 Mar; 14(3):165-72. PubMed ID: 15167704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Computational analysis of a cys-loop ligand gated ion channel from the green alga Chlamydomonas reinhardtii].
    Mukherjee A
    Mol Biol (Mosk); 2015; 49(5):832-45. PubMed ID: 26510602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct interaction of the resistance to inhibitors of cholinesterase type 3 protein with the serotonin receptor type 3A intracellular domain.
    Nishtala SN; Mnatsakanyan N; Pandhare A; Leung C; Jansen M
    J Neurochem; 2016 May; 137(4):528-38. PubMed ID: 26875553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. X-ray structure of the mouse serotonin 5-HT3 receptor.
    Hassaine G; Deluz C; Grasso L; Wyss R; Tol MB; Hovius R; Graff A; Stahlberg H; Tomizaki T; Desmyter A; Moreau C; Li XD; Poitevin F; Vogel H; Nury H
    Nature; 2014 Aug; 512(7514):276-81. PubMed ID: 25119048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrophobic photolabeling studies identify the lipid-protein interface of the 5-HT3A receptor.
    Sanghvi M; Hamouda AK; Davis MI; Morton RA; Srivastava S; Pandhare A; Duddempudi PK; Machu TK; Lovinger DM; Cohen JB; Blanton MP
    Biochemistry; 2009 Oct; 48(39):9278-86. PubMed ID: 19715355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel structural determinants of single channel conductance and ion selectivity in 5-hydroxytryptamine type 3 and nicotinic acetylcholine receptors.
    Peters JA; Cooper MA; Carland JE; Livesey MR; Hales TG; Lambert JJ
    J Physiol; 2010 Feb; 588(Pt 4):587-96. PubMed ID: 19933751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of domains influencing assembly and ion channel properties in alpha 7 nicotinic receptor and 5-HT3 receptor subunit chimaeras.
    Gee VJ; Kracun S; Cooper ST; Gibb AJ; Millar NS
    Br J Pharmacol; 2007 Oct; 152(4):501-12. PubMed ID: 17721553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proline Residues in the Transmembrane/Extracellular Domain Interface Loops Have Different Behaviors in 5-HT
    Mosesso R; Dougherty DA; Lummis SCR
    ACS Chem Neurosci; 2019 Jul; 10(7):3327-3333. PubMed ID: 31273982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping spatial relationships between residues in the ligand-binding domain of the 5-HT3 receptor using a molecular ruler.
    Nyce HL; Stober ST; Abrams CF; White MM
    Biophys J; 2010 May; 98(9):1847-55. PubMed ID: 20441748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.