These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24030902)

  • 1. Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy.
    Wang L; Wang HY; Wang Y; Zhu SJ; Zhang YL; Zhang JH; Chen QD; Han W; Xu HL; Yang B; Sun HB
    Adv Mater; 2013 Dec; 25(45):6539-45. PubMed ID: 24030902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence.
    Yeh TF; Huang WL; Chung CJ; Chiang IT; Chen LC; Chang HY; Su WC; Cheng C; Chen SJ; Teng H
    J Phys Chem Lett; 2016 Jun; 7(11):2087-92. PubMed ID: 27192445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene Oxide Quantum Dot-Based Functional Nanomaterials for Effective Antimicrobial Applications.
    Nichols F; Chen S
    Chem Rec; 2020 Dec; 20(12):1505-1515. PubMed ID: 32975907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-Dimensional graphene as a route for emergence of additional dimension nanomaterials.
    Patra S; Roy E; Tiwari A; Madhuri R; Sharma PK
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):8-27. PubMed ID: 26992844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-Based Nanomaterials and Their Applications in Biosensors.
    Kim YJ; Jeong B
    Adv Exp Med Biol; 2018; 1064():61-71. PubMed ID: 30471026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum confinement-induced tunable exciton states in graphene oxide.
    Lee D; Seo J; Zhu X; Lee J; Shin HJ; Cole JM; Shin T; Lee J; Lee H; Su H
    Sci Rep; 2013; 3():2250. PubMed ID: 23872608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quaternized carbon dot-modified graphene oxide for selective cell labelling--controlled nucleus and cytoplasm imaging.
    Datta KK; Kozák O; Ranc V; Havrdová M; Bourlinos AB; Safářová K; Holá K; Tománková K; Zoppellaro G; Otyepka M; Zbořil R
    Chem Commun (Camb); 2014 Sep; 50(74):10782-5. PubMed ID: 24983507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally reduced graphenes exhibiting a close relationship to amorphous carbon.
    Wong CH; Ambrosi A; Pumera M
    Nanoscale; 2012 Aug; 4(16):4972-7. PubMed ID: 22760743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemiluminescent immunoassay for neuron specific enolase by using amino-modified reduced graphene oxide loaded with N-doped carbon quantum dots.
    Zheng X; Mo G; He Y; Qin D; Jiang X; Mo W; Deng B
    Mikrochim Acta; 2019 Nov; 186(12):817. PubMed ID: 31749073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-Based Nanomaterials for Biomedical Imaging.
    Lee SY; Kwon M; Raja IS; Molkenova A; Han DW; Kim KS
    Adv Exp Med Biol; 2022; 1351():125-148. PubMed ID: 35175615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials.
    Socaci C; Pogacean F; Biris AR; Coros M; Rosu MC; Magerusan L; Katona G; Pruneanu S
    Talanta; 2016 Feb; 148():511-7. PubMed ID: 26653479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination.
    Yeh TF; Teng CY; Chen SJ; Teng H
    Adv Mater; 2014 May; 26(20):3297-303. PubMed ID: 24677453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A universal growth strategy for DNA-programmed quantum dots on graphene oxide surfaces.
    Wang J; Gao Z; He S; Jin P; Ma D; Gao Y; Wang L; Han S
    Nanotechnology; 2020 Mar; 31(24):24LT02. PubMed ID: 32126544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene Quantum Dots: Synthesis and Applications.
    Kalluri A; Debnath D; Dharmadhikari B; Patra P
    Methods Enzymol; 2018; 609():335-354. PubMed ID: 30244796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects.
    Sajjadi M; Nasrollahzadeh M; Jaleh B; Soufi GJ; Iravani S
    J Drug Target; 2021 Aug; 29(7):716-741. PubMed ID: 33566719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements.
    Shadjou N; Hasanzadeh M; Omari A
    Anal Biochem; 2017 Dec; 539():70-80. PubMed ID: 29056522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Envelopment-Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size.
    Ouyang S; Hu X; Zhou Q
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18104-12. PubMed ID: 26221973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties.
    Wang P; Zhai Y; Wang D; Dong S
    Nanoscale; 2011 Apr; 3(4):1640-5. PubMed ID: 21286599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines.
    Marković ZM; Jovanović SP; Mašković PZ; Mojsin MM; Stevanović MJ; Danko M; Mičušík M; Jovanović DJ; Kleinová A; Špitalský Z; Pavlović VB; Todorović Marković BM
    J Photochem Photobiol B; 2019 Nov; 200():111647. PubMed ID: 31648133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biexciton Binding of Dirac fermions Confined in Colloidal Graphene Quantum Dots.
    Sun C; Figge F; Ozfidan I; Korkusinski M; Yan X; Li LS; Hawrylak P; McGuire JA
    Nano Lett; 2015 Aug; 15(8):5472-6. PubMed ID: 26192636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.