BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24031189)

  • 1. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources.
    Pavezzi FC; Gomes E; da Silva R
    Braz J Microbiol; 2008 Jan; 39(1):108-14. PubMed ID: 24031189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of different substrates on the production of a mutant thermostable glucoamylase in submerged fermentation.
    Pavezzi FC; Carneiro AA; Bocchini-Martins DA; Alves-Prado HF; Ferreira H; Martins PM; Gomes E; da Silva R
    Appl Biochem Biotechnol; 2011 Jan; 163(1):14-24. PubMed ID: 20414741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased thermostability of Asn182 --> Ala mutant Aspergillus awamori glucoamylase.
    Reilly PJ; Chen HM; Bakir U; Ford C
    Biotechnol Bioeng; 1994 Jan; 43(1):101-5. PubMed ID: 18613315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts.
    Fierobe HP; Mirgorodskaya E; Frandsen TP; Roepstorff P; Svensson B
    Protein Expr Purif; 1997 Mar; 9(2):159-70. PubMed ID: 9056481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from
    Xu QS; Yan YS; Feng JX
    Biotechnol Biofuels; 2016; 9():216. PubMed ID: 27777618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds.
    Farid MA; El-Enshasy HA; Noor El-Deen AM
    J Basic Microbiol; 2002; 42(3):162-71. PubMed ID: 12111743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of corn starch to ethanol with genetically engineered yeast.
    Inlow D; McRae J; Ben-Bassat A
    Biotechnol Bioeng; 1988 Jul; 32(2):227-34. PubMed ID: 18584739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Development of a Sorghum Bran-Based Biorefining Process to Convert Sorghum Bran into Value Added Products.
    Makanjuola O; Greetham D; Zou X; Du C
    Foods; 2019 Jul; 8(8):. PubMed ID: 31344870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity.
    Hua H; Luo H; Bai Y; Wang K; Niu C; Huang H; Shi P; Wang C; Yang P; Yao B
    PLoS One; 2014; 9(11):e113581. PubMed ID: 25415468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, Glycosylation, and Secretion of an Aspergillus Glucoamylase by Saccharomyces cerevisiae.
    Innis MA; Holland MJ; McCabe PC; Cole GE; Wittman VP; Tal R; Watt KW; Gelfand DH; Holland JP; Meade JH
    Science; 1985 Apr; 228(4695):21-6. PubMed ID: 17811549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast.
    Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):957-68. PubMed ID: 22450569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosslinked enzyme crystals of glucoamylase as a potent catalyst for biotransformations.
    Abraham TE; Joseph JR; Bindhu LB; Jayakumar KK
    Carbohydr Res; 2004 Apr; 339(6):1099-104. PubMed ID: 15063197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and biochemical characterization of a novel mesophilic glucoamylase from Aspergillus tritici WZ99.
    Xian L; Feng JX
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1122-1130. PubMed ID: 28951303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glucoamylase from Aspergillus wentii: Purification and characterization.
    Lago MC; Dos Santos FC; Bueno PSA; de Oliveira MAS; Barbosa-Tessmann IP
    J Basic Microbiol; 2021 May; 61(5):443-458. PubMed ID: 33783000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing glucoamylase usage for commercial-scale ethanol production from starch using glucoamylase expressing Saccharomyces cerevisiae.
    Wang X; Liao B; Li Z; Liu G; Diao L; Qian F; Yang J; Jiang Y; Zhao S; Li Y; Yang S
    Bioresour Bioprocess; 2021 Feb; 8(1):20. PubMed ID: 38650183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase.
    Li Y; Coutinho PM; Ford C
    Protein Eng; 1998 Aug; 11(8):661-7. PubMed ID: 9749918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins.
    de Moraes LM; Astolfi-Filho S; Oliver SG
    Appl Microbiol Biotechnol; 1995 Nov; 43(6):1067-76. PubMed ID: 8590658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes.
    Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S
    Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a fungal glucoamylase in transgenic rice seeds.
    Xu X; Huang J; Fang J; Lin C; Cheng J; Shen Z
    Protein Expr Purif; 2008 Oct; 61(2):113-6. PubMed ID: 18588984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.
    Wang R; Wang D; Gao X; Hong J
    Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.