BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24031293)

  • 1. Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01.
    Lu CG; Liu WC; Qiu JY; Wang HM; Liu T; De Liu W
    Braz J Microbiol; 2008 Oct; 39(4):701-7. PubMed ID: 24031293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea.
    Wu Q; Bai L; Liu W; Li Y; Lu C; Li Y; Fu K; Yu C; Chen J
    J Microbiol; 2013 Apr; 51(2):166-73. PubMed ID: 23625216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Extraction and structural identification of the antifungal metabolite of Streptomyces lydicus A02].
    Sui Q; Liu W; Lu C; Liu T; Qiu J; Liu X
    Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):840-6. PubMed ID: 19777810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of antimicrobial metabolites produced by a potential biocontrol Actinomycete strain A217.
    He H; Hao X; Zhou W; Shi N; Feng J; Han L
    J Appl Microbiol; 2020 Apr; 128(4):1143-1152. PubMed ID: 31830360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial Efficacy of 7-Hydroxyflavone Derived from
    Math HH; Kumar RS; Chakraborty B; Almansour AI; Perumal K; Kantli GB; Nayaka S
    Antibiotics (Basel); 2023 Jul; 12(7):. PubMed ID: 37508271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous coexpression of Vitreoscilla hemoglobin and Bacillus megaterium glucanase in Streptomyces lydicus A02 enhanced its production of antifungal metabolites.
    Wu H; Li J; Dong D; Liu T; Zhang T; Zhang D; Liu W
    Enzyme Microb Technol; 2015 Dec; 81():80-7. PubMed ID: 26453475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streptomyces lydicus A01 affects soil microbial diversity, improving growth and resilience in tomato.
    Wu Q; Lu C; Ni M; Wang H; Liu W; Chen J
    J Integr Plant Biol; 2019 Feb; 61(2):182-196. PubMed ID: 30255551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Isolation, screening and identification of anantagonistic actinomycetes to control
    Li XF; Tian YH; Peng HY; He BL; Gao KX
    Ying Yong Sheng Tai Xue Bao; 2020 Nov; 31(11):3869-3879. PubMed ID: 33300738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SlnM gene overexpression with different promoters on natamycin production in Streptomyces lydicus A02.
    Wu H; Liu W; Dong D; Li J; Zhang D; Lu C
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):163-72. PubMed ID: 24174215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2.
    Shen W; Wang D; Wei L; Zhang Y
    Appl Microbiol Biotechnol; 2020 May; 104(10):4471-4482. PubMed ID: 32221688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Community Structures and Antifungal Activity of Root-Associated Endophytic Actinobacteria in Healthy and Diseased Cucumber Plants and Streptomyces sp. HAAG3-15 as a Promising Biocontrol Agent.
    Cao P; Li C; Wang H; Yu Z; Xu X; Wang X; Zhao J; Xiang W
    Microorganisms; 2020 Feb; 8(2):. PubMed ID: 32050670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of
    Xu Z; Wang M; Du J; Huang T; Liu J; Dong T; Chen Y
    Front Microbiol; 2020; 11():605152. PubMed ID: 33362750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal properties of an actinomycin D-producing strain, Streptomyces sp. IA1, isolated from a Saharan soil.
    Toumatia O; Yekkour A; Goudjal Y; Riba A; Coppel Y; Mathieu F; Sabaou N; Zitouni A
    J Basic Microbiol; 2015 Feb; 55(2):221-8. PubMed ID: 25284744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum.
    Lu D; Ma Z; Xu X; Yu X
    J Basic Microbiol; 2016 Aug; 56(8):929-33. PubMed ID: 27192632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological control of toxigenic citrus and papaya-rotting fungi by Streptomyces violascens MT7 and its extracellular metabolites.
    Choudhary B; Nagpure A; Gupta RK
    J Basic Microbiol; 2015 Dec; 55(12):1343-56. PubMed ID: 26214840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Antifungal Actinomycete
    Zou N; Zhou D; Chen Y; Lin P; Chen Y; Wang W; Xie J; Wang M
    Front Microbiol; 2021; 12():706647. PubMed ID: 34497593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungichromin production by Streptomyces sp. WP-1, an endophyte from Pinus dabeshanensis, and its antifungal activity against Fusarium oxysporum.
    Peng C; An D; Ding WX; Zhu YX; Ye L; Li J
    Appl Microbiol Biotechnol; 2020 Dec; 104(24):10437-10449. PubMed ID: 33170328
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Yang C; Wang Z; Wan J; Qi T; Zou L
    Front Plant Sci; 2023; 14():1097044. PubMed ID: 36938063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis regulation of natamycin production from Streptomyces natalensis HDMNTE-01 enhanced by response surface methodology.
    Ge J; Wang C; Huang S; Du R; Liu K; Song G; Ping W
    Prep Biochem Biotechnol; 2017 Oct; 47(9):939-944. PubMed ID: 28816611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Isolation of Actinomycete DF02 from Composting and Its Application in Biological Control of Botrytis cinerea].
    Wang XJ; Min CL; Yang Y
    Zhong Yao Cai; 2015 Aug; 38(8):1566-70. PubMed ID: 26983225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.