BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24031641)

  • 21. Improved Medium for Selecting Nitrate-Nonutilizing (nit) Mutants of Verticillium dahliae.
    Korolev N; Katan T
    Phytopathology; 1997 Oct; 87(10):1067-70. PubMed ID: 18945042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colletotrichum sublineolum genetic instability assessed by mutants resistant to chlorate.
    Cecília de Lima Fávaro L; Luiz Araújo W; Aparecida de Souza-Paccola E; Lúcio Azevedo J; Paccola-Meirelles LD
    Mycol Res; 2007 Jan; 111(Pt 1):93-105. PubMed ID: 17158042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle.
    Pellier AL; Laugé R; Veneault-Fourrey C; Langin T
    Mol Microbiol; 2003 May; 48(3):639-55. PubMed ID: 12694611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two genomes are better than one: history, genetics, and biotechnological applications of fungal heterokaryons.
    Strom NB; Bushley KE
    Fungal Biol Biotechnol; 2016; 3():4. PubMed ID: 28955463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of Colletotrichum orbiculare and Several Allied Colletotrichum spp. for mtDNA RFLPs, Intron RFLP and Sequence Variation, Vegetative Compatibility, and Host Specificity.
    Liu B; Wasilwa LA; Morelock TE; O'Neill NR; Correll JC
    Phytopathology; 2007 Oct; 97(10):1305-14. PubMed ID: 18943689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Pyricularia grisea in the United States Using Independent Genetic and Molecular Markers.
    Correll JC; Harp TL; Guerber JC; Zeigler RS; Liu B; Cartwright RD; Lee FN
    Phytopathology; 2000 Dec; 90(12):1396-404. PubMed ID: 18943382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Starvation-induced cell fusion and heterokaryosis frequently escape imperfect allorecognition systems in an asexual fungal pathogen.
    Vangalis V; Likhotkin I; Knop M; Typas MA; Papaioannou IA
    BMC Biol; 2021 Aug; 19(1):169. PubMed ID: 34429100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus.
    Atehnkeng J; Donner M; Ojiambo PS; Ikotun B; Augusto J; Cotty PJ; Bandyopadhyay R
    Microb Biotechnol; 2016 Jan; 9(1):75-88. PubMed ID: 26503309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Colletotrichum acutatum causing anthracnose of anemone (Anemone coronaria L.).
    Freeman S; Shabi E; Katan T
    Appl Environ Microbiol; 2000 Dec; 66(12):5267-72. PubMed ID: 11097901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vegetative compatibility groups in indigenous and mass-released strains of the entomopathogenic fungus Beauveria bassiana: likelihood of recombination in the field.
    Castrillo LA; Griggs MH; Vandenberg JD
    J Invertebr Pathol; 2004; 86(1-2):26-37. PubMed ID: 15145248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Race Structure and Molecular Diversity of
    Sansala M; Kuwabo K; Hamabwe SM; Kachapulula P; Parker T; Mukuma C; Kamfwa K
    Plant Dis; 2024 Apr; 108(4):857-865. PubMed ID: 37622270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vegetative Compatibility and Pathogenicity of Verticillium dahliae from Spearmint and Peppermint.
    Douhan LI; Johnson DA
    Plant Dis; 2001 Mar; 85(3):297-302. PubMed ID: 30832046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vegetative compatibility and pathogenecity of Verticillium dahliae kleb. isolates from olive in Iran.
    Sanei SJ; Okhovvat SM; Javan-Nikkhah M; Saremi H
    Commun Agric Appl Biol Sci; 2005; 70(3):323-5. PubMed ID: 16637195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular and Vegetative Compatibility Groups Characterization of
    Mitema A; Feto NA
    AIMS Microbiol; 2020; 6(3):231-249. PubMed ID: 33134742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vegetative Compatibility Groups of Fusarium oxysporum f. sp. cepae from Onion in Colorado.
    Swift CE; Wickliffe ER; Schwartz HF
    Plant Dis; 2002 Jun; 86(6):606-610. PubMed ID: 30823232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and functional characterization of the Colletotrichum lindemuthianum nit1 gene, which encodes a nitrate eductase enzyme.
    Nogueira GB; Queiroz MV; Ribeiro RA; Araújo EF
    Genet Mol Res; 2013 Feb; 12(1):420-33. PubMed ID: 23420367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic variability of Cercospora coffeicola from organic and conventional coffee plantings, characterized by vegetative compatibility.
    Martins RB; Maffia LA; Mizubuti ES
    Phytopathology; 2008 Nov; 98(11):1205-11. PubMed ID: 18943409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Additional Vegetative Compatibility Groups in Colletotrichum coccodes Subpopulations from Europe and Israel.
    Shcolnick S; Dinoor A; Tsror Lahkim L
    Plant Dis; 2007 Jul; 91(7):805-808. PubMed ID: 30780388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of Colletotrichum coccodes isolates into vegetative compatibility groups using infrared attenuated total reflectance spectroscopy and multivariate analysis.
    Salman A; Shufan E; Tsror L; Moreh R; Mordechai S; Huleihel M
    Methods; 2014 Jul; 68(2):325-30. PubMed ID: 24582779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen.
    Ishikawa FH; Souza EA; Shoji JY; Connolly L; Freitag M; Read ND; Roca MG
    PLoS One; 2012; 7(2):e31175. PubMed ID: 22319613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.