These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24031790)

  • 1. Isolation and cultivation of fungal strains from in vitro cell cultures of two marine sponges (Porifera: Halichondrida and Haplosclerida).
    Rozas EE; Albano RM; Lôbo-Hajdu G; Müller WE; Schröder HC; Custódio MR
    Braz J Microbiol; 2011 Oct; 42(4):1560-8. PubMed ID: 24031790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of fungal isolates from three Hawaiian marine sponges.
    Li Q; Wang G
    Microbiol Res; 2009; 164(2):233-41. PubMed ID: 17681460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata.
    Gao Z; Li B; Zheng C; Wang G
    Appl Environ Microbiol; 2008 Oct; 74(19):6091-101. PubMed ID: 18676706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico.
    Erwin PM; Olson JB; Thacker RW
    PLoS One; 2011; 6(11):e26806. PubMed ID: 22073197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors.
    Schröder HC; Brümmer F; Fattorusso E; Aiello A; Menna M; de Rosa S; Batel R; Müller WE
    Prog Mol Subcell Biol; 2003; 37():163-97. PubMed ID: 15825644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primmorphs from seven marine sponges: formation and structure.
    Sipkema D; van Wielink R; van Lammeren AA; Tramper J; Osinga R; Wijffels RH
    J Biotechnol; 2003 Jan; 100(2):127-39. PubMed ID: 12423907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of fractionated cells from a bioactive-alkaloid-bearing marine sponge Axinella sp.
    Song Y; Qu Y; Cao X; Zhang W; Zhang F; Linhardt RJ; Yang Q
    In Vitro Cell Dev Biol Anim; 2021 May; 57(5):539-549. PubMed ID: 33948851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable use of marine resources: cultivation of sponges.
    Brümmer F; Nickel M
    Prog Mol Subcell Biol; 2003; 37():143-62. PubMed ID: 15825643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primmorphs from archaeocytes-dominant cell population of the sponge hymeniacidon perleve: improved cell proliferation and spiculogenesis.
    Zhang X; Cao X; Zhang W; Yu X; Jin M
    Biotechnol Bioeng; 2003 Dec; 84(5):583-90. PubMed ID: 14574692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic diversity of culturable fungi associated with the Hawaiian Sponges Suberites zeteki and Gelliodes fibrosa.
    Wang G; Li Q; Zhu P
    Antonie Van Leeuwenhoek; 2008; 93(1-2):163-74. PubMed ID: 17647088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiome analysis of healthy and diseased sponges
    Chernogor L; Klimenko E; Khanaev I; Belikov S
    PeerJ; 2020; 8():e9080. PubMed ID: 32518718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and in vitro cultivation of archaeocytes (stem cells) of the marine sponge Hymeniacidon perleve (Demospongiae).
    Sun L; Song Y; Qu Y; Yu X; Zhang W
    Cell Tissue Res; 2007 Apr; 328(1):223-37. PubMed ID: 17149593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term cultivation of primmorphs from freshwater Baikal sponges Lubomirskia baikalensis.
    Chernogor LI; Denikina NN; Belikov SI; Ereskovsky AV
    Mar Biotechnol (NY); 2011 Aug; 13(4):782-92. PubMed ID: 21221695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron.
    Le Pennec G; Perovic S; Ammar MS; Grebenjuk VA; Steffen R; Brümmer F; Müller WE
    J Biotechnol; 2003 Jan; 100(2):93-108. PubMed ID: 12423904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara.
    Müller WE; Böhm M; Batel R; De Rosa S; Tommonaro G; Müller IM; Schröder HC
    J Nat Prod; 2000 Aug; 63(8):1077-81. PubMed ID: 10978201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraspecific Variation in Microbial Symbiont Communities of the Sun Sponge, Hymeniacidon heliophila, from Intertidal and Subtidal Habitats.
    Weigel BL; Erwin PM
    Appl Environ Microbiol; 2016 Jan; 82(2):650-8. PubMed ID: 26567307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of reciprocal transplantation on the microbiome and putative nitrogen cycling functions of the intertidal sponge, Hymeniacidon heliophila.
    Weigel BL; Erwin PM
    Sci Rep; 2017 Feb; 7():43247. PubMed ID: 28233813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal diversity of mangrove-associated sponges from New Washington, Aklan, Philippines.
    Calabon MS; Sadaba RB; Campos WL
    Mycology; 2019 Mar; 10(1):6-21. PubMed ID: 30834148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body structure of marine sponges. VI. Choanocyte chamber structure in the haplosclerida (porifera, demospongiae) and its relevance to the phylogenesis of the group.
    Langenbruch PF; Jones WC
    J Morphol; 1990 Apr; 204(1):1-8. PubMed ID: 29865728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primmorphs cryopreservation: a new method for long-time storage of sponge cells.
    Mussino F; Pozzolini M; Valisano L; Cerrano C; Benatti U; Giovine M
    Mar Biotechnol (NY); 2013 Jun; 15(3):357-67. PubMed ID: 23151942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.