BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24031898)

  • 1. Bioprospecting thermophiles for cellulase production: a review.
    Acharya S; Chaudhary A
    Braz J Microbiol; 2012 Jul; 43(3):844-56. PubMed ID: 24031898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The realm of cellulases in biorefinery development.
    Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S
    Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostable cellulases: Current status and perspectives.
    Patel AK; Singhania RR; Sim SJ; Pandey A
    Bioresour Technol; 2019 May; 279():385-392. PubMed ID: 30685132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulases from Thermophiles Found by Metagenomics.
    Escuder-Rodríguez JJ; DeCastro ME; Cerdán ME; Rodríguez-Belmonte E; Becerra M; González-Siso MI
    Microorganisms; 2018 Jul; 6(3):. PubMed ID: 29996513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols.
    Dowe N
    Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulase-immobilized chitosan-coated magnetic nanoparticles for saccharification of lignocellulosic biomass.
    Kaur G; Taggar MS; Kalia A
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):111627-111647. PubMed ID: 37280490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial cellulases - An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential.
    Paul M; Mohapatra S; Kumar Das Mohapatra P; Thatoi H
    Bioresour Technol; 2021 Nov; 340():125710. PubMed ID: 34365301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial cellulases and their industrial applications.
    Kuhad RC; Gupta R; Singh A
    Enzyme Res; 2011; 2011():280696. PubMed ID: 21912738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.
    Tiwari R; Nain L; Labrou NE; Shukla P
    Crit Rev Microbiol; 2018 Mar; 44(2):244-257. PubMed ID: 28609211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current perspective in research and industrial applications of microbial cellulases.
    Sutaoney P; Rai SN; Sinha S; Choudhary R; Gupta AK; Singh SK; Banerjee P
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130639. PubMed ID: 38453122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulase and xylanase synergism in industrial biotechnology.
    Bajaj P; Mahajan R
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8711-8724. PubMed ID: 31628521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi.
    Sukumaran RK; Christopher M; Kooloth-Valappil P; Sreeja-Raju A; Mathew RM; Sankar M; Puthiyamadam A; Adarsh VP; Aswathi A; Rebinro V; Abraham A; Pandey A
    Bioresour Technol; 2021 Jun; 329():124746. PubMed ID: 33610429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and computational studies of cellulases as bioethanol enzymes.
    Ranganathan S; Mahesh S; Suresh S; Nagarajan A; Z Sen T; M Yennamalli R
    Bioengineered; 2022 May; 13(5):14028-14046. PubMed ID: 35730402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.
    Kumar R; Singh S; Singh OV
    J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective.
    Ajeje SB; Hu Y; Song G; Peter SB; Afful RG; Sun F; Asadollahi MA; Amiri H; Abdulkhani A; Sun H
    Front Bioeng Biotechnol; 2021; 9():794304. PubMed ID: 34976981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.
    Ou MS; Mohammed N; Ingram LO; Shanmugam KT
    Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications.
    Dadwal A; Sharma S; Satyanarayana T
    Int J Biol Macromol; 2021 Oct; 188():226-244. PubMed ID: 34371052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea.
    Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM
    Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in Ameliorating Beneficial Characteristics of Microbial Cellulases by Genetic Engineering Approaches for Cellulose Saccharification.
    Dadwal A; Sharma S; Satyanarayana T
    Front Microbiol; 2020; 11():1387. PubMed ID: 32670240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.