These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24032765)

  • 1. Rotation-induced grain growth and stagnation in phase-field crystal models.
    Bjerre M; Tarp JM; Angheluta L; Mathiesen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):020401. PubMed ID: 24032765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotation-limited growth of three-dimensional body-centered-cubic crystals.
    Tarp JM; Mathiesen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012409. PubMed ID: 26274188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling behavior of grain-rotation-induced grain growth.
    Moldovan D; Yamakov V; Wolf D; Phillpot SR
    Phys Rev Lett; 2002 Nov; 89(20):206101. PubMed ID: 12443489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarsening in polycrystalline material using quaternions.
    Biswas S; Samajdar I; Haldar A; Sain A
    J Phys Condens Matter; 2011 Feb; 23(7):072202. PubMed ID: 21411872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How grain growth stops: a mechanism for grain-growth stagnation in pure materials.
    Holm EA; Foiles SM
    Science; 2010 May; 328(5982):1138-41. PubMed ID: 20508126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of film growth kinetics on grain coarsening and grain shape.
    Reis FDAA
    Phys Rev E; 2017 Apr; 95(4-1):042805. PubMed ID: 28505723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-assisted grain coarsening in colloidal polycrystals.
    Li W; Peng Y; Zhang Y; Still T; Yodh AG; Han Y
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24055-24060. PubMed ID: 32938800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring relative grain-boundary energies in block-copolymer microstructures.
    Ryu HJ; Fortner DB; Rohrer GS; Bockstaller MR
    Phys Rev Lett; 2012 Mar; 108(10):107801. PubMed ID: 22463454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect structures in the growth kinetics of the Swift-Hohenberg model.
    Qian H; Mazenko GF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036102. PubMed ID: 12689127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations.
    Fensin SJ; Olmsted D; Buta D; Asta M; Karma A; Hoyt JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031601. PubMed ID: 20365741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grain-boundary-induced melting in quenched polycrystalline monolayers.
    Deutschländer S; Boitard C; Maret G; Keim P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):060302. PubMed ID: 26764613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ordering mechanisms in two-dimensional sphere-forming block copolymers.
    Vega DA; Harrison CK; Angelescu DE; Trawick ML; Huse DA; Chaikin PM; Register RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061803. PubMed ID: 16089757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain coarsening of stripe patterns close to onset.
    Boyer D; Viñals J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):050101. PubMed ID: 11735879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D melting of plasma crystals: equilibrium and nonequilibrium regimes.
    Nosenko V; Zhdanov SK; Ivlev AV; Knapek CA; Morfill GE
    Phys Rev Lett; 2009 Jul; 103(1):015001. PubMed ID: 19659153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical physics of grain-boundary engineering.
    McGarrity ES; Duxbury PM; Holm EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026102. PubMed ID: 15783373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multilevel Physically Based Model of Recrystallization: Analysis of the Influence of Subgrain Coalescence at Grain Boundaries on the Formation of Recrystallization Nuclei in Metals.
    Trusov P; Kondratev N; Baldin M; Bezverkhy D
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains.
    Li XY; Jin ZH; Zhou X; Lu K
    Science; 2020 Nov; 370(6518):831-836. PubMed ID: 33184210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth dynamics for DNA-guided nanoparticle crystallization.
    Dhakal S; Kohlstedt KL; Schatz GC; Mirkin CA; Olvera de la Cruz M
    ACS Nano; 2013 Dec; 7(12):10948-59. PubMed ID: 24274629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetization processes in nanocrystalline gadolinium.
    Mathew SP; Kaul SN
    J Phys Condens Matter; 2012 Jun; 24(25):256008. PubMed ID: 22647806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic origin of grain boundary migration, grain coalescence, and defect reduction in the crystallization of quenched two-dimensional Yukawa liquids.
    Chen MC; Yang C; I L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):050401. PubMed ID: 25493723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.