These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24032768)

  • 1. Monte Carlo algorithm for simulating the O(N) loop model on the square lattice.
    Silva AM; Schakel AM; Vasconcelos GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):021301. PubMed ID: 24032768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical properties of a dilute O(n) model on the kagome lattice.
    Li B; Guo W; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021128. PubMed ID: 18850807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric allocation approach to accelerating directed worm algorithm.
    Suwa H
    Phys Rev E; 2021 Jan; 103(1-1):013308. PubMed ID: 33601561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ising-like transitions in the O(n) loop model on the square lattice.
    Fu Z; Guo W; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052118. PubMed ID: 23767498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reptation quantum Monte Carlo algorithm for lattice Hamiltonians with a directed-update scheme.
    Carleo G; Becca F; Moroni S; Baroni S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046710. PubMed ID: 21230415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved rosenbluth monte carlo scheme for cluster counting and lattice animal enumeration.
    Care CM; Ettelaie R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):1397-404. PubMed ID: 11088600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Worm-type Monte Carlo simulation of the Ashkin-Teller model on the triangular lattice.
    Lv JP; Deng Y; Chen QH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021125. PubMed ID: 21928967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-loop algorithm for quantum Monte Carlo simulations.
    Kao YJ; Melko RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036708. PubMed ID: 18517558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized directed loop method for quantum Monte Carlo simulations.
    Alet F; Wessel S; Troyer M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036706. PubMed ID: 15903632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Worm algorithm for continuous-space path integral monte carlo simulations.
    Boninsegni M; Prokof'ev N; Svistunov B
    Phys Rev Lett; 2006 Feb; 96(7):070601. PubMed ID: 16606070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A continuum, O(N) Monte Carlo algorithm for charged particles.
    Rottler J; Maggs AC
    J Chem Phys; 2004 Feb; 120(7):3119-29. PubMed ID: 15268464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained loop algorithms for Monte Carlo simulation of quantum spin systems.
    Harada K; Kawashima N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056705. PubMed ID: 12513635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidiscontinuity algorithm for world-line Monte Carlo simulations.
    Kato Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013310. PubMed ID: 23410463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo algorithm for simulating reversible aggregation of multisite particles.
    Chang Q; Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056701. PubMed ID: 21728687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cluster simulations of loop models on two-dimensional lattices.
    Deng Y; Garoni TM; Guo W; Blöte HW; Sokal AD
    Phys Rev Lett; 2007 Mar; 98(12):120601. PubMed ID: 17501107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo studies of three-dimensional O1 and O4 phi4 theory related to Bose-Einstein condensation phase transition temperatures.
    Sun X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066702. PubMed ID: 16241375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Annealing contour Monte Carlo algorithm for structure optimization in an off-lattice protein model.
    Liang F
    J Chem Phys; 2004 Apr; 120(14):6756-63. PubMed ID: 15267570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed geometrical worm algorithm applied to the quantum rotor model.
    Alet F; Sørensen ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026702. PubMed ID: 14525143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High precision canonical Monte Carlo determination of the growth constant of square lattice trees.
    Janse van Rensburg EJ; Rechnitzer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036116. PubMed ID: 12689141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo study of the site-percolation model in two and three dimensions.
    Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016126. PubMed ID: 16090055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.