These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24032829)

  • 1. Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: impact of interfacial rigidity.
    Le Merrer M; Cohen-Addad S; Höhler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022303. PubMed ID: 24032829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble rearrangement duration in foams near the jamming point.
    Le Merrer M; Cohen-Addad S; Höhler R
    Phys Rev Lett; 2012 May; 108(18):188301. PubMed ID: 22681122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-mode dynamics in dispersed systems: the case of particle-stabilized foams studied by diffusing wave spectroscopy.
    Stocco A; Crassous J; Salonen A; Saint-Jalmes A; Langevin D
    Phys Chem Chem Phys; 2011 Feb; 13(8):3064-72. PubMed ID: 21107475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubble dynamics relaxation in aqueous foam probed by multispeckle diffusing-wave spectroscopy.
    Cohen-Addad S; Höhler R
    Phys Rev Lett; 2001 May; 86(20):4700-3. PubMed ID: 11384318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistics of bubble rearrangement dynamics in a coarsening foam.
    Gittings AS; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066313. PubMed ID: 19256951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the slow linear viscoelastic response of aqueous foams.
    Cohen-Addad S; Höhler R; Khidas Y
    Phys Rev Lett; 2004 Jul; 93(2):028302. PubMed ID: 15323957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical bubble size distributions in coarsening wet liquid foams.
    Galvani N; Pasquet M; Mukherjee A; Requier A; Cohen-Addad S; Pitois O; Höhler R; Rio E; Salonen A; Durian DJ; Langevin D
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2306551120. PubMed ID: 37708201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear-Induced "Melting" of an Aqueous Foam.
    Gopal AD; Durian DJ
    J Colloid Interface Sci; 1999 May; 213(1):169-178. PubMed ID: 10191019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bubble statistics and coarsening dynamics for quasi-two-dimensional foams with increasing liquid content.
    Roth AE; Jones CD; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042304. PubMed ID: 23679411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.
    Engelhardt K; Lexis M; Gochev G; Konnerth C; Miller R; Willenbacher N; Peukert W; Braunschweig B
    Langmuir; 2013 Sep; 29(37):11646-55. PubMed ID: 23961700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Investigation of Foam Coarsening Dynamics in Porous Media at High-Pressure and High-Temperature Conditions.
    Yu W; Zhou X; Kanj MY
    Langmuir; 2022 Mar; 38(9):2895-2905. PubMed ID: 35192368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening.
    Maestro A; Rio E; Drenckhan W; Langevin D; Salonen A
    Soft Matter; 2014 Sep; 10(36):6975-83. PubMed ID: 24832218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarsening dynamics of three-dimensional levitated foams: From wet to dry.
    Isert N; Maret G; Aegerter CM
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):116. PubMed ID: 24136181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foams prepared from whey protein isolate and egg white protein: 1. Physical, microstructural, and interfacial properties.
    Yang X; Berry TK; Foegeding EA
    J Food Sci; 2009 Jun; 74(5):E259-68. PubMed ID: 19646041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarsening and mechanics in the bubble model for wet foams.
    Khakalo K; Baumgarten K; Tighe BP; Puisto A
    Phys Rev E; 2018 Jul; 98(1-1):012607. PubMed ID: 30110853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial rheology insights: particle texture and Pickering foam stability.
    Brown N; de la Pena A; Razavi S
    J Phys Condens Matter; 2023 Jun; 35(38):. PubMed ID: 37311466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters.
    Pierre J; Giraudet B; Chasle P; Dollet B; Saint-Jalmes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042311. PubMed ID: 25974495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Border-crossing model for the diffusive coarsening of two-dimensional and quasi-two-dimensional wet foams.
    Schimming CD; Durian DJ
    Phys Rev E; 2017 Sep; 96(3-1):032805. PubMed ID: 29346872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foam coarsening under a steady shear: interplay between bubble rearrangement and film thinning dynamics.
    Saint-Jalmes A; Trégouët C
    Soft Matter; 2023 Mar; 19(11):2090-2098. PubMed ID: 36853265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whey protein soluble aggregates from heating with NaCl: physicochemical, interfacial, and foaming properties.
    Schmitt C; Bovay C; Rouvet M; Shojaei-Rami S; Kolodziejczyk E
    Langmuir; 2007 Apr; 23(8):4155-66. PubMed ID: 17341103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.