These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24032837)

  • 1. Capturing self-propelled particles in a moving microwedge.
    Kaiser A; Popowa K; Wensink HH; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022311. PubMed ID: 24032837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to capture active particles.
    Kaiser A; Wensink HH; Löwen H
    Phys Rev Lett; 2012 Jun; 108(26):268307. PubMed ID: 23005024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping and sorting active particles: Motility-induced condensation and smectic defects.
    Kumar N; Gupta RK; Soni H; Ramaswamy S; Sood AK
    Phys Rev E; 2019 Mar; 99(3-1):032605. PubMed ID: 30999541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field.
    Grauer J; Löwen H; Janssen LMC
    Phys Rev E; 2018 Feb; 97(2-1):022608. PubMed ID: 29548202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An attraction-repulsion transition of force on wedges induced by active particles.
    Hua Y; Li K; Zhou X; He L; Zhang L
    Soft Matter; 2018 Jun; 14(25):5205-5212. PubMed ID: 29888771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ballistic behavior and trapping of self-driven particles in a Poiseuille flow.
    Apaza L; Sandoval M
    Phys Rev E; 2016 Jun; 93(6):062602. PubMed ID: 27415315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping of interacting propelled colloidal particles in inhomogeneous media.
    Magiera MP; Brendel L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012304. PubMed ID: 26274159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion, subdiffusion, and trapping of active particles in heterogeneous media.
    Chepizhko O; Peruani F
    Phys Rev Lett; 2013 Oct; 111(16):160604. PubMed ID: 24182247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer and scattering of wave packets by a nonlinear trap.
    Li K; Kevrekidis PG; Malomed BA; Frantzeskakis DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056609. PubMed ID: 22181538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.
    Chung IY; Lee J
    Ultrasonics; 2015 Feb; 56():220-6. PubMed ID: 25106111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields.
    Küchler N; Löwen H; Menzel AM
    Phys Rev E; 2016 Feb; 93(2):022610. PubMed ID: 26986380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of self-propelled particles across a porous medium: trapping, clogging, and the Matthew effect.
    Shi SJ; Li HS; Feng GQ; Tian WD; Chen K
    Phys Chem Chem Phys; 2020 Jul; 22(25):14052-14060. PubMed ID: 32568323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tricritical points in a Vicsek model of self-propelled particles with bounded confidence.
    Romensky M; Lobaskin V; Ihle T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063315. PubMed ID: 25615230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping of deformable active particles by a periodic background potential.
    Li JJ; Guo RX; Ai BQ
    Phys Rev E; 2024 Apr; 109(4-1):044143. PubMed ID: 38755904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organized vortices of circling self-propelled particles and curved active flagella.
    Yang Y; Qiu F; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012720. PubMed ID: 24580270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles.
    Buttinoni I; Bialké J; Kümmel F; Löwen H; Bechinger C; Speck T
    Phys Rev Lett; 2013 Jun; 110(23):238301. PubMed ID: 25167534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale collective properties of self-propelled rods.
    Ginelli F; Peruani F; Bär M; Chaté H
    Phys Rev Lett; 2010 May; 104(18):184502. PubMed ID: 20482178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic low Reynolds number swimmers.
    Golestanian R; Ajdari A
    J Phys Condens Matter; 2009 May; 21(20):204104. PubMed ID: 21825513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.