These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24032848)

  • 1. Interface kinetics in phase-field models: isothermal transformations in binary alloys and step dynamics in molecular-beam epitaxy.
    Boussinot G; Brener EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022406. PubMed ID: 24032848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic cross coupling between nonconserved and conserved fields in phase field models.
    Brener EA; Boussinot G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):060601. PubMed ID: 23367883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase field models for step flow.
    Pierre-Louis O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021604. PubMed ID: 14524983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Onsager approach to the one-dimensional solidification problem and its relation to the phase-field description.
    Brener EA; Temkin DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031601. PubMed ID: 22587102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential.
    Choudhury A; Nestler B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021602. PubMed ID: 22463218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-phase-field model of stepped surfaces.
    Castro M; Hernández-Machado A; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021601. PubMed ID: 19391755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase field modeling of fracture and stress-induced phase transitions.
    Spatschek R; Müller-Gugenberger C; Brener E; Nestler B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066111. PubMed ID: 17677329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion.
    Ramirez JC; Beckermann C; Karma A; Diepers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051607. PubMed ID: 15244829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-dimensional model of interacting-step fluctuations on vicinal surfaces: analytical formulas and kinetic Monte Carlo simulations.
    Patrone PN; Einstein TL; Margetis D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061601. PubMed ID: 21230676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-field simulations of velocity selection in rapidly solidified binary alloys.
    Fan J; Greenwood M; Haataja M; Provatas N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031602. PubMed ID: 17025638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear hydrodynamic theory of crystallization.
    Tóth GI; Gránásy L; Tegze G
    J Phys Condens Matter; 2014 Feb; 26(5):055001. PubMed ID: 24334547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving realistic interface kinetics in phase-field models with a diffusional contrast.
    Boussinot G; Brener EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):060402. PubMed ID: 25019706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instability and wavelength selection during step flow growth of metal surfaces vicinal to fcc(001).
    Rusanen M; Koponen IT; Heinonen J; Ala-Nissila T
    Phys Rev Lett; 2001 Jun; 86(23):5317-20. PubMed ID: 11384487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational formulation and numerical accuracy of a quantitative phase-field model for binary alloy solidification with two-sided diffusion.
    Ohno M; Takaki T; Shibuta Y
    Phys Rev E; 2016 Jan; 93(1):012802. PubMed ID: 26871136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-field model for binary alloys.
    Kim SG; Kim WT; Suzuki T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7186-97. PubMed ID: 11970661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.
    Galenko P; Jou D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046125. PubMed ID: 15903744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovering thermodynamic consistency of the antitrapping model: a variational phase-field formulation for alloy solidification.
    Fang A; Mi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012402. PubMed ID: 23410339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities.
    Ohno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051603. PubMed ID: 23214789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy of melts and intermetallic compounds of binary alloys determined by a molecular dynamics approach.
    Guerdane M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023308. PubMed ID: 25353606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-coupling and interface-pinning effects in the phase-field-crystal model.
    Huang ZF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012401. PubMed ID: 23410338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.