BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24032859)

  • 1. Entrainment range of nonidentical circadian oscillators by a light-dark cycle.
    Gu C; Xu J; Liu Z; Rohling JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022702. PubMed ID: 24032859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion of the intrinsic neuronal periods affects the relationship of the entrainment range to the coupling strength in the suprachiasmatic nucleus.
    Gu C; Yang H; Wang M
    Phys Rev E; 2017 Nov; 96(5-1):052207. PubMed ID: 29347798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of neuronal properties determines the collective behavior of the neurons in the suprachiasmatic nucleus.
    Gu CG; Wang P; Weng TF; Yang HJ; Rohling J
    Math Biosci Eng; 2019 Mar; 16(4):1893-1913. PubMed ID: 31137191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photic desynchronization of two subgroups of circadian oscillators in a network model of the suprachiasmatic nucleus with dispersed coupling strengths.
    Gu C; Liu Z; Schwartz WJ; Indic P
    PLoS One; 2012; 7(5):e36900. PubMed ID: 22615838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise Induces Oscillation and Synchronization of the Circadian Neurons.
    Gu C; Xu J; Rohling J; Yang H; Liu Z
    PLoS One; 2015; 10(12):e0145360. PubMed ID: 26691765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of dispersed coupling strength on the free running periods of circadian rhythms.
    Gu C; Rohling JH; Liang X; Yang H
    Phys Rev E; 2016 Mar; 93(3):032414. PubMed ID: 27078397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entrainment of circadian clocks in mammals by arousal and food.
    Mistlberger RE; Antle MC
    Essays Biochem; 2011 Jun; 49(1):119-36. PubMed ID: 21819388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-dark cycle memory in the mammalian suprachiasmatic nucleus.
    Ospeck MC; Coffey B; Freeman D
    Biophys J; 2009 Sep; 97(6):1513-24. PubMed ID: 19751655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanisms of structural plasticity associated with photic synchronization of the circadian clock within the suprachiasmatic nucleus].
    Bosler O; Girardet C; Sage-Ciocca D; Jacomy H; François-Bellan AM; Becquet D
    J Soc Biol; 2009; 203(1):49-63. PubMed ID: 19358811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronisation mechanisms of circadian rhythms in the suprachiasmatic nucleus.
    Li Y; Liu Z; Zhang J; Wang R; Chen L
    IET Syst Biol; 2009 Mar; 3(2):100-12. PubMed ID: 19292564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity induces rhythms of weakly coupled circadian neurons.
    Gu C; Liang X; Yang H; Rohling JH
    Sci Rep; 2016 Feb; 6():21412. PubMed ID: 26898574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The asymmetry of the entrainment range induced by the difference in intrinsic frequencies between two subgroups within the suprachiasmatic nucleus.
    Gu C; Yang H
    Chaos; 2017 Jun; 27(6):063115. PubMed ID: 28679229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of circadian behavior and the suprachiasmatic nucleus following exposure to non-24-hour light cycles.
    Aton SJ; Block GD; Tei H; Yamazaki S; Herzog ED
    J Biol Rhythms; 2004 Jun; 19(3):198-207. PubMed ID: 15155006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light sets the brain's daily clock by regional quickening and slowing of the molecular clockworks at dawn and dusk.
    Kim S; McMahon DG
    Elife; 2021 Dec; 10():. PubMed ID: 34927581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.