These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 24032898)
1. Resonance energy transport and exchange in oscillator arrays. Kovaleva A; Manevitch LI Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022904. PubMed ID: 24032898 [TBL] [Abstract][Full Text] [Related]
2. Intense energy transfer and superharmonic resonance in a system of two coupled oscillators. Kovaleva A; Manevitch L; Manevitch E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056215. PubMed ID: 20866315 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear energy transfer in classical and quantum systems. Manevitch L; Kovaleva A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022904. PubMed ID: 23496588 [TBL] [Abstract][Full Text] [Related]
4. Classical analog of quasilinear Landau-Zener tunneling. Kovaleva A; Manevitch LI Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016202. PubMed ID: 22400638 [TBL] [Abstract][Full Text] [Related]
5. Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics. Kosevich YA; Manevitch LI; Savin AV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046603. PubMed ID: 18517746 [TBL] [Abstract][Full Text] [Related]
6. Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Romeo F; Manevitch LI; Bergman LA; Vakakis A Chaos; 2015 May; 25(5):053109. PubMed ID: 26026321 [TBL] [Abstract][Full Text] [Related]
7. Resonance-induced energy localization in a weakly dissipative nonlinear chain. Kovaleva A Phys Rev E; 2018 Jul; 98(1-1):012205. PubMed ID: 30110728 [TBL] [Abstract][Full Text] [Related]
8. Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters. Kovaleva A; Manevitch LI; Kosevich YA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026602. PubMed ID: 21405919 [TBL] [Abstract][Full Text] [Related]
9. Out-of-unison resonance in weakly nonlinear coupled oscillators. Hill TL; Cammarano A; Neild SA; Wagg DJ Proc Math Phys Eng Sci; 2015 Jan; 471(2173):20140659. PubMed ID: 25568619 [TBL] [Abstract][Full Text] [Related]
10. Synchronization between two weakly coupled delay-line oscillators. Levy EC; Horowitz M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066209. PubMed ID: 23368026 [TBL] [Abstract][Full Text] [Related]
11. Phase and amplitude dynamics of nonlinearly coupled oscillators. Cudmore P; Holmes CA Chaos; 2015 Feb; 25(2):023110. PubMed ID: 25725646 [TBL] [Abstract][Full Text] [Related]
12. Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy. Moore KJ; Bunyan J; Tawfick S; Gendelman OV; Li S; Leamy M; Vakakis AF Phys Rev E; 2018 Jan; 97(1-1):012219. PubMed ID: 29448402 [TBL] [Abstract][Full Text] [Related]
13. Networked-oscillator-based modeling and control of unsteady wake flows. Nair AG; Brunton SL; Taira K Phys Rev E; 2018 Jun; 97(6-1):063107. PubMed ID: 30011576 [TBL] [Abstract][Full Text] [Related]
14. Capture into resonance of coupled Duffing oscillators. Kovaleva A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022909. PubMed ID: 26382478 [TBL] [Abstract][Full Text] [Related]
15. Transient dynamics in strongly nonlinear systems: optimization of initial conditions on the resonant manifold. Perchikov N; Gendelman OV Philos Trans A Math Phys Eng Sci; 2018 Aug; 376(2127):. PubMed ID: 30037929 [TBL] [Abstract][Full Text] [Related]
17. Amplitude death in oscillators coupled by a one-way ring time-delay connection. Konishi K Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066201. PubMed ID: 15697478 [TBL] [Abstract][Full Text] [Related]
18. Internal autoresonance in coupled oscillators with slowly decaying frequency. Kovaleva A; Manevitch LI Phys Rev E; 2017 Sep; 96(3-1):032213. PubMed ID: 29346874 [TBL] [Abstract][Full Text] [Related]
19. Energy dissipation via coupling with a finite chaotic environment. Marchiori MA; de Aguiar MA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061112. PubMed ID: 21797307 [TBL] [Abstract][Full Text] [Related]
20. Globally coupled noisy oscillators with inhomogeneous periodic forcing. Gabbay M; Larsen ML; Tsimring LS Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066212. PubMed ID: 15697489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]