BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24032923)

  • 1. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions.
    Muller PB; Rossi M; Marín AG; Barnkob R; Augustsson P; Laurell T; Kähler CJ; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023006. PubMed ID: 24032923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane.
    Barnkob R; Augustsson P; Laurell T; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056307. PubMed ID: 23214876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustophoresis in shallow microchannels.
    Koklu M; Sabuncu AC; Beskok A
    J Colloid Interface Sci; 2010 Nov; 351(2):407-14. PubMed ID: 20804984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle-size-dependent acoustophoretic motion and depletion of micro- and nano-particles at long timescales.
    Qiu W; Bruus H; Augustsson P
    Phys Rev E; 2020 Jul; 102(1-1):013108. PubMed ID: 32794927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the local pressure amplitude in microchannel acoustophoresis.
    Barnkob R; Augustsson P; Laurell T; Bruus H
    Lab Chip; 2010 Mar; 10(5):563-70. PubMed ID: 20162231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.
    Lei J; Hill M; Glynne-Jones P
    Lab Chip; 2014 Feb; 14(3):532-41. PubMed ID: 24284651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic tweezing of microparticles in microchannels with sinusoidal cross sections.
    Jannesar EA; Hamzehpour H
    Sci Rep; 2021 Sep; 11(1):17902. PubMed ID: 34504163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis.
    Antfolk M; Muller PB; Augustsson P; Bruus H; Laurell T
    Lab Chip; 2014 Aug; 14(15):2791-9. PubMed ID: 24895052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels.
    Muller PB; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063018. PubMed ID: 26764815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of microchannel height on the acoustophoretic motion of sub-micron particles.
    Lai TW; Tennakoon T; Chan KC; Liu CH; Chao CYH; Fu SC
    Ultrasonics; 2024 Jan; 136():107126. PubMed ID: 37553269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison.
    Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H
    Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fluid medium flow and spatial temperature variation on acoustophoretic motion of microparticles in microfluidic channels.
    Liu Z; Kim YJ; Wang H; Han A
    J Acoust Soc Am; 2016 Jan; 139(1):332-49. PubMed ID: 26827029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces.
    Lei J
    Microfluid Nanofluidics; 2017; 21(3):50. PubMed ID: 32226357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.