These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24032923)

  • 41. Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave.
    Kuznetsova LA; Martin SP; Coakley WT
    Biosens Bioelectron; 2005 Dec; 21(6):940-8. PubMed ID: 16257663
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.
    Karlsen JT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043010. PubMed ID: 26565335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.
    Ben Haj Slama R; Gilles B; Ben Chiekh M; Béra JC
    Ultrasonics; 2017 Apr; 76():217-226. PubMed ID: 28135577
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Applications of ultrasound streaming and radiation force in biosensors.
    Kuznetsova LA; Coakley WT
    Biosens Bioelectron; 2007 Mar; 22(8):1567-77. PubMed ID: 16979887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method.
    Barnkob R; Iranmanesh I; Wiklund M; Bruus H
    Lab Chip; 2012 Jul; 12(13):2337-44. PubMed ID: 22522812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental study on inter-particle acoustic forces.
    Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R
    J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acoustic Streaming Efficiency in a Microfluidic Biosensor with an Integrated CMUT.
    Pelenis D; Vanagas G; Barauskas D; Dzikaras M; Mikolajūnas M; Viržonis D
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241635
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional heating and patterning dynamics of particles in microscale acoustic tweezers.
    Weser R; Deng Z; Kondalkar VV; Darinskii AN; Cierpka C; Schmidt H; König J
    Lab Chip; 2022 Jul; 22(15):2886-2901. PubMed ID: 35851398
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparisons of the acoustic radiation force of ultrasonic standing waves in half-wavelength and quarter-wavelength micro-resonators of cylindrical geometry.
    Yang IH; Kim N
    Ultrasonics; 2024 Mar; 138():107267. PubMed ID: 38367402
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical and experimental analysis of a hybrid material acoustophoretic device for manipulation of microparticles.
    Barani A; Mosaddegh P; Haghjooy Javanmard S; Sepehrirahnama S; Sanati-Nezhad A
    Sci Rep; 2021 Nov; 11(1):22048. PubMed ID: 34764352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems.
    Devendran C; Albrecht T; Brenker J; Alan T; Neild A
    Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dispersion of overdamped diffusing particles in channel flows coupled to transverse acoustophoretic potentials: transport regimes and scaling anomalies.
    Giona M; Garofalo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032104. PubMed ID: 26465423
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels.
    Muller PB; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043016. PubMed ID: 25375602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid.
    Leão-Neto JP; Silva GT
    Ultrasonics; 2016 Sep; 71():1-11. PubMed ID: 27254398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping.
    Lakämper S; Lamprecht A; Schaap IA; Dual J
    Lab Chip; 2015 Jan; 15(1):290-300. PubMed ID: 25370872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.