These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24032923)

  • 61. Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques.
    Garbin A; Leibacher I; Hahn P; Le Ferrand H; Studart A; Dual J
    J Acoust Soc Am; 2015 Nov; 138(5):2759-69. PubMed ID: 26627752
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Eccentric electrophoretic motion of a rectangular particle in a rectangular microchannel.
    Li D; Daghighi Y
    J Colloid Interface Sci; 2010 Feb; 342(2):638-42. PubMed ID: 19944427
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.
    Destgeer G; Ha B; Park J; Sung HJ
    Anal Chem; 2016 Apr; 88(7):3976-81. PubMed ID: 26937678
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1152-9. PubMed ID: 20442026
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Acoustic interaction forces between small particles in an ideal fluid.
    Silva GT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063007. PubMed ID: 25615187
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification.
    Nguyen NT; White RM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1463-71. PubMed ID: 18238693
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Suppression of Acoustic Streaming in Shape-Optimized Channels.
    Bach JS; Bruus H
    Phys Rev Lett; 2020 May; 124(21):214501. PubMed ID: 32530665
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Two-dimensional spatial manipulation of microparticles in continuous flows in acoustofluidic systems.
    Gao L; Wyatt Shields C; Johnson LM; Graves SW; Yellen BB; López GP
    Biomicrofluidics; 2015 Jan; 9(1):014105. PubMed ID: 25713687
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An extended view for acoustofluidic particle manipulation: Scenarios for actuation modes and device resonance phenomenon for bulk-acoustic-wave devices.
    Özer MB; Çetin B
    J Acoust Soc Am; 2021 Apr; 149(4):2802. PubMed ID: 33940873
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Concentration of microparticles and bubbles in standing waves.
    Ostrovsky L
    J Acoust Soc Am; 2015 Dec; 138(6):3607-12. PubMed ID: 26723317
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Augmented longitudinal acoustic trap for scalable microparticle enrichment.
    Cui M; Binkley MM; Shekhani HN; Berezin MY; Meacham JM
    Biomicrofluidics; 2018 May; 12(3):034110. PubMed ID: 29937950
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Wall effects on electrophoretic motion of spherical polystyrene particles in a rectangular poly(dimethylsiloxane) microchannel.
    Xuan X; Raghibizadeh S; Li D
    J Colloid Interface Sci; 2006 Apr; 296(2):743-8. PubMed ID: 16226268
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine.
    Ramadan IA; Bailliet H; Valière JC
    J Acoust Soc Am; 2018 Jan; 143(1):361. PubMed ID: 29390757
    [TBL] [Abstract][Full Text] [Related]  

  • 76. From rectangular to diamond shape: on the three-dimensional and size-dependent transformation of patterns formed by single particles trapped in microfluidic acoustic tweezers.
    Deng Z; Kondalkar VV; Cierpka C; Schmidt H; König J
    Lab Chip; 2023 May; 23(9):2154-2160. PubMed ID: 37013801
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ultrasonic particle size fractionation in a moving air stream.
    Budwig RS; Anderson MJ; Putnam G; Manning C
    Ultrasonics; 2010 Jan; 50(1):26-31. PubMed ID: 19682719
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of high intensity focused ultrasound transducers using acoustic streaming.
    Hariharan P; Myers MR; Robinson RA; Maruvada SH; Sliwa J; Banerjee RK
    J Acoust Soc Am; 2008 Mar; 123(3):1706-19. PubMed ID: 18345858
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Acoustophoretic contactless elevation, orbital transport and spinning of matter in air.
    Foresti D; Poulikakos D
    Phys Rev Lett; 2014 Jan; 112(2):024301. PubMed ID: 24484018
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Three-dimensional spiral motion of microparticles by a binary-phase logarithmic-spiral zone plate.
    Xia X; Li Y; Cai F; Zhou H; Ma T; Wang J; Wang J; Zheng H
    J Acoust Soc Am; 2021 Oct; 150(4):2401. PubMed ID: 34717505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.