These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24032932)

  • 21. Can vibrations control drop motion?
    Borcia R; Borcia ID; Bestehorn M
    Langmuir; 2014 Dec; 30(47):14113-7. PubMed ID: 25398095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaporation of sessile water/ethanol drops in a controlled environment.
    Liu C; Bonaccurso E; Butt HJ
    Phys Chem Chem Phys; 2008 Dec; 10(47):7150-7. PubMed ID: 19039349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drops climbing uphill on a slowly oscillating substrate.
    Benilov ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026320. PubMed ID: 20866918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Total Gaussian curvature, drop shapes and the range of applicability of drop shape techniques.
    Saad SM; Neumann AW
    Adv Colloid Interface Sci; 2014 Feb; 204():1-14. PubMed ID: 24373931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Smoothed particle hydrodynamics-based numerical investigation on sessile, oscillating droplets.
    Weiss D; Lienemann J; Greiner A; Kauzlarić D; Korvink JG
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2565-73. PubMed ID: 21576172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effect of Slight Deformation on Thermocapillary-Driven Droplet Coalescence and Growth.
    Rother MA; Davis RH
    J Colloid Interface Sci; 1999 Jun; 214(2):297-318. PubMed ID: 10339370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of electric charge and motion of water drops on the inception field strength of partial discharges.
    Löwe JM; Hinrichsen V; Roisman IV; Tropea C
    Phys Rev E; 2020 Dec; 102(6-1):063101. PubMed ID: 33465960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.
    Xie C; Liu G; Wang M
    Langmuir; 2016 Aug; 32(32):8255-64. PubMed ID: 27441759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The proper orthogonal decomposition: A powerful tool for studying drop oscillations.
    Giorgi ML; Duval H; Balabane M
    Rev Sci Instrum; 2021 Nov; 92(11):113903. PubMed ID: 34852554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the Lateral Retention Forces on Sessile, Pendant, and Inverted Sessile Drops.
    de la Madrid R; Garza F; Kirk J; Luong H; Snowden L; Taylor J; Vizena B
    Langmuir; 2019 Feb; 35(7):2871-2877. PubMed ID: 30724570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic measurement of the force required to move a liquid drop on a solid surface.
    Pilat DW; Papadopoulos P; Schäffel D; Vollmer D; Berger R; Butt HJ
    Langmuir; 2012 Dec; 28(49):16812-20. PubMed ID: 23181385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oscillation and recoil of single and consecutively printed droplets.
    Yang X; Chhasatia VH; Sun Y
    Langmuir; 2013 Feb; 29(7):2185-92. PubMed ID: 23360081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equilibrium and stability of axisymmetric drops on a conical substrate under gravity.
    Nurse AK; Colbert-Kelly S; Coriell SR; McFadden GB
    Phys Fluids (1994); 2015; 27(8):. PubMed ID: 33311971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shapes and Fissility of Highly Charged and Rapidly Rotating Levitated Liquid Drops.
    Liao L; Hill RJA
    Phys Rev Lett; 2017 Sep; 119(11):114501. PubMed ID: 28949221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oscillations of Drops with Mobile Contact Lines on the International Space Station: Elucidation of Terrestrial Inertial Droplet Spreading.
    McCraney J; Kern V; Bostwick JB; Daniel S; Steen PH
    Phys Rev Lett; 2022 Aug; 129(8):084501. PubMed ID: 36053709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.
    Dash S; Chandramohan A; Weibel JA; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theory of non-equilibrium force measurements involving deformable drops and bubbles.
    Chan DY; Klaseboer E; Manica R
    Adv Colloid Interface Sci; 2011 Jul; 165(2):70-90. PubMed ID: 21257141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibration-induced climbing of drops.
    Brunet P; Eggers J; Deegan RD
    Phys Rev Lett; 2007 Oct; 99(14):144501. PubMed ID: 17930674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-frequency electrowetting: application to drop evaporation gauging within a digital microsystem.
    Theisen J; Davoust L
    Langmuir; 2012 Jan; 28(1):1041-8. PubMed ID: 22054097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rayleigh-Benard convection in a vertically oscillated fluid layer.
    Rogers JL; Schatz MF; Bougie JL; Swift JB
    Phys Rev Lett; 2000 Jan; 84(1):87-90. PubMed ID: 11015841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.