These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 24033668)

  • 1. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment.
    Wang F; Annaheim S; Morrissey M; Rossi RM
    Scand J Med Sci Sports; 2014 Jun; 24(3):e129-39. PubMed ID: 24033668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?
    Wang F; Gao C; Kuklane K; Holmér I
    Ann Occup Hyg; 2011 Aug; 55(7):775-83. PubMed ID: 21669906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of fabric skins for the simulation of sweating on thermal manikins.
    Koelblen B; Psikuta A; Bogdan A; Annaheim S; Rossi RM
    Int J Biometeorol; 2017 Sep; 61(9):1519-1529. PubMed ID: 28303342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-evaporative effects of a wet mid layer on heat transfer through protective clothing.
    Bröde P; Havenith G; Wang X; Candas V; den Hartog EA; Griefahn B; Holmér I; Kuklane K; Meinander H; Nocker W; Richards M
    Eur J Appl Physiol; 2008 Sep; 104(2):341-9. PubMed ID: 18084775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction of the heat loss method for calculating clothing real evaporative resistance.
    Wang F; Zhang C; Lu Y
    J Therm Biol; 2015 Aug; 52():45-51. PubMed ID: 26267497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fabric thickness and material on apparent 'wet' conductive thermal resistance of knitted fabric 'skin' on sweating manikins.
    Wang F; Lai D; Shi W; Fu M
    J Therm Biol; 2017 Dec; 70(Pt A):69-76. PubMed ID: 29074028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).
    Lu Y; Wang F; Peng H; Shi W; Song G
    Int J Biometeorol; 2016 Apr; 60(4):481-8. PubMed ID: 26150329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode.
    Wang F; Del Ferraro S; Molinaro V; Morrissey M; Rossi R
    Int J Biometeorol; 2014 Sep; 58(7):1673-82. PubMed ID: 24357489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New functions and applications of walter, the sweating fabric manikin.
    Fan J; Qian X
    Eur J Appl Physiol; 2004 Sep; 92(6):641-4. PubMed ID: 15138829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment.
    Guan M; Li J
    Int J Biometeorol; 2020 Mar; 64(3):485-499. PubMed ID: 32016640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.
    Havenith G; Bröde P; den Hartog E; Kuklane K; Holmer I; Rossi RM; Richards M; Farnworth B; Wang X
    J Appl Physiol (1985); 2013 Mar; 114(6):778-85. PubMed ID: 23329814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaporative heat loss and clothing.
    Nagata H
    J Hum Ergol (Tokyo); 1978 Dec; 7(2):169-75. PubMed ID: 756450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of two sweating simulation methods on clothing evaporative resistance in a so-called isothermal condition.
    Lu Y; Wang F; Peng H
    Int J Biometeorol; 2016 Jul; 60(7):1041-9. PubMed ID: 26542017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of a moisture-wicking fabric shirt on the physiological and perceptual responses during acute exercise in the heat.
    De Sousa J; Cheatham C; Wittbrodt M
    Appl Ergon; 2014 Nov; 45(6):1447-53. PubMed ID: 24768089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature difference between manikin and wet fabric skin surfaces on clothing evaporative resistance: how much error is there?
    Wang F; Kuklane K; Gao C; Holmér I
    Int J Biometeorol; 2012 Jan; 56(1):177-82. PubMed ID: 21318453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective clothing and heat stress.
    Holmér I
    Ergonomics; 1995 Jan; 38(1):166-82. PubMed ID: 7875118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects.
    Havenith G; Richards MG; Wang X; Bröde P; Candas V; den Hartog E; Holmér I; Kuklane K; Meinander H; Nocker W
    J Appl Physiol (1985); 2008 Jan; 104(1):142-9. PubMed ID: 17947501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clothing impact on post-exercise comfort: skin-clothing physiology in transient environment.
    Abedin F; DenHartog E
    Ergonomics; 2023 Nov; ():1-17. PubMed ID: 37960939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.
    Henriksson O; Lundgren P; Kuklane K; Holmér I; Naredi P; Bjornstig U
    Prehosp Disaster Med; 2012 Feb; 27(1):53-8. PubMed ID: 22445055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel personal cooling system (PCS) incorporated with phase change materials (PCMs) and ventilation fans: An investigation on its cooling efficiency.
    Lu Y; Wei F; Lai D; Shi W; Wang F; Gao C; Song G
    J Therm Biol; 2015 Aug; 52():137-46. PubMed ID: 26267508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.