BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24034166)

  • 21. Phylogenetic relationships among Taphrina, Saitoella, and other higher fungi.
    Nishida H; Sugiyama J
    Mol Biol Evol; 1993 Mar; 10(2):431-6. PubMed ID: 8487639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.
    Ferreira V; Gonçalves AL; Canhoto C
    Mycologia; 2012; 104(3):613-22. PubMed ID: 22123653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated temperature may reduce functional but not taxonomic diversity of fungal assemblages on decomposing leaf litter in streams.
    Fenoy E; Pradhan A; Pascoal C; Rubio-Ríos J; Batista D; Moyano-López FJ; Cássio F; Casas JJ
    Glob Chang Biol; 2022 Jan; 28(1):115-127. PubMed ID: 34651383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream.
    Newman MM; Liles MR; Feminella JW
    PLoS One; 2015; 10(6):e0130801. PubMed ID: 26098687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial decomposer communities are mainly structured by trophic status in circumneutral and alkaline streams.
    Duarte S; Pascoal C; Garabétian F; Cássio F; Charcosset JY
    Appl Environ Microbiol; 2009 Oct; 75(19):6211-21. PubMed ID: 19648371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mixtures of zinc and phosphate affect leaf litter decomposition by aquatic fungi in streams.
    Fernandes I; Duarte S; Cássio F; Pascoal C
    Sci Total Environ; 2009 Jul; 407(14):4283-8. PubMed ID: 19411090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stream salinization and fungal-mediated leaf decomposition: A microcosm study.
    Canhoto C; Simões S; Gonçalves AL; Guilhermino L; Bärlocher F
    Sci Total Environ; 2017 Dec; 599-600():1638-1645. PubMed ID: 28535592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses of Aquatic Hyphomycetes to Temperature and Nutrient Availability: a Cross-transplantation Experiment.
    Pérez J; Martínez A; Descals E; Pozo J
    Microb Ecol; 2018 Aug; 76(2):328-339. PubMed ID: 29417187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogeny and systematics of the fungi with special reference to the Ascomycota and Basidiomycota.
    Prillinger H; Lopandic K; Schweigkofler W; Deak R; Aarts HJ; Bauer R; Sterflinger K; Kraus GF; Maraz A
    Chem Immunol; 2002; 81():207-95. PubMed ID: 12102002
    [No Abstract]   [Full Text] [Related]  

  • 30. Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams.
    Duarte S; Cássio F; Ferreira V; Canhoto C; Pascoal C
    Microb Ecol; 2016 Aug; 72(2):263-76. PubMed ID: 27193000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes.
    Liu YJ; Hodson MC; Hall BD
    BMC Evol Biol; 2006 Sep; 6():74. PubMed ID: 17010206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of riparian plant diversity loss on aquatic microbial decomposers become more pronounced with increasing time.
    Fernandes I; Duarte S; Cássio F; Pascoal C
    Microb Ecol; 2013 Nov; 66(4):763-72. PubMed ID: 23963224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid lipid nanoparticles affect microbial colonization and enzymatic activity throughout the decomposition of alder leaves in freshwater microcosms.
    Sampaio AC; Mendes RJ; Castro PG; Silva AM
    Ecotoxicol Environ Saf; 2017 Jan; 135():375-380. PubMed ID: 27776303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream.
    Das M; Royer TV; Leff LG
    Appl Environ Microbiol; 2007 Feb; 73(3):756-67. PubMed ID: 17142366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodiversity of leaf litter fungi in streams along a latitudinal gradient.
    Seena S; Bärlocher F; Sobral O; Gessner MO; Dudgeon D; McKie BG; Chauvet E; Boyero L; Ferreira V; Frainer A; Bruder A; Matthaei CD; Fenoglio S; Sridhar KR; Albariño RJ; Douglas MM; Encalada AC; Garcia E; Ghate SD; Giling DP; Gonçalves V; Iwata T; Landeira-Dabarca A; McMaster D; Medeiros AO; Naggea J; Pozo J; Raposeiro PM; Swan CM; Tenkiano NSD; Yule CM; Graça MAS
    Sci Total Environ; 2019 Apr; 661():306-315. PubMed ID: 30677678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Culture-dependent and -independent approaches establish the complexity of a PAH-degrading microbial consortium.
    Viñas M; Sabaté J; Guasp C; Lalucat J; Solanas AM
    Can J Microbiol; 2005 Nov; 51(11):897-909. PubMed ID: 16333329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impacts of warming on aquatic decomposers along a gradient of cadmium stress.
    Batista D; Pascoal C; Cássio F
    Environ Pollut; 2012 Oct; 169():35-41. PubMed ID: 22683478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams?
    Pradhan A; Seena S; Pascoal C; Cássio F
    Microb Ecol; 2011 Jul; 62(1):58-68. PubMed ID: 21553058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contrasting habitats but comparable microbial decomposition in the benthic and hyporheic zone.
    Risse-Buhl U; Mendoza-Lera C; Norf H; Pérez J; Pozo J; Schlief J
    Sci Total Environ; 2017 Dec; 605-606():683-691. PubMed ID: 28675878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.