BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24034274)

  • 1. Early transcriptomic adaptation to Na₂CO₃ stress altered the expression of a quarter of the total genes in the maize genome and exhibited shared and distinctive profiles with NaCl and high pH stresses.
    Zhang LM; Liu XG; Qu XN; Yu Y; Han SP; Dou Y; Xu YY; Jing HC; Hao DY
    J Integr Plant Biol; 2013 Nov; 55(11):1147-65. PubMed ID: 24034274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.
    Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ
    Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic profiles of Japanese medaka (Oryzias latipes) in response to alkalinity stress.
    Yao ZL; Wang H; Chen L; Zhou K; Ying CQ; Lai QF
    Genet Mol Res; 2012 Aug; 11(3):2200-46. PubMed ID: 22782624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.
    Yu Y; Huang W; Chen H; Wu G; Yuan H; Song X; Kang Q; Zhao D; Jiang W; Liu Y; Wu J; Cheng L; Yao Y; Guan F
    Gene; 2014 Oct; 549(1):113-22. PubMed ID: 25058012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray.
    Luo M; Liu J; Lee RD; Scully BT; Guo B
    J Integr Plant Biol; 2010 Dec; 52(12):1059-74. PubMed ID: 21106005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential responses of maize MIP genes to salt stress and ABA.
    Zhu C; Schraut D; Hartung W; Schäffner AR
    J Exp Bot; 2005 Nov; 56(421):2971-81. PubMed ID: 16216844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb.
    Shen Y; Zhang Y; Chen J; Lin H; Zhao M; Peng H; Liu L; Yuan G; Zhang S; Zhang Z; Pan G
    Physiol Plant; 2013 Mar; 147(3):270-82. PubMed ID: 22747913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings.
    Jia J; Fu J; Zheng J; Zhou X; Huai J; Wang J; Wang M; Zhang Y; Chen X; Zhang J; Zhao J; Su Z; Lv Y; Wang G
    Plant J; 2006 Dec; 48(5):710-27. PubMed ID: 17076806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic analysis highlights reciprocal interactions of urea and nitrate for nitrogen acquisition by maize roots.
    Zanin L; Zamboni A; Monte R; Tomasi N; Varanini Z; Cesco S; Pinton R
    Plant Cell Physiol; 2015 Mar; 56(3):532-48. PubMed ID: 25524070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress.
    Shi J; Yan B; Lou X; Ma H; Ruan S
    BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought stress responses in maize are diminished by Piriformospora indica.
    Zhang W; Wang J; Xu L; Wang A; Huang L; Du H; Qiu L; Oelmüller R
    Plant Signal Behav; 2018 Jan; 13(1):e1414121. PubMed ID: 29219729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential gene expression analysis of maize leaf at heading stage in response to water-deficit stress.
    Yue G; Zhuang Y; Li Z; Sun L; Zhang J
    Biosci Rep; 2008 Jun; 28(3):125-34. PubMed ID: 18422487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum).
    Zhu H; Wang H; Zhu Y; Zou J; Zhao FJ; Huang CF
    BMC Plant Biol; 2015 Jan; 15():16. PubMed ID: 25603892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling.
    Li H; Yan S; Zhao L; Tan J; Zhang Q; Gao F; Wang P; Hou H; Li L
    BMC Plant Biol; 2014 Apr; 14():105. PubMed ID: 24758373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress.
    Gu L; Liu Y; Zong X; Liu L; Li DP; Li DQ
    Mol Biol Rep; 2010 Dec; 37(8):4067-73. PubMed ID: 20339925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression and functional analyses in brassinosteroid-mediated stress tolerance.
    Divi UK; Rahman T; Krishna P
    Plant Biotechnol J; 2016 Jan; 14(1):419-32. PubMed ID: 25973891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of early Al-responsive genes in rice bean (Vigna umbellata) roots provides new clues to molecular mechanisms of Al toxicity and tolerance.
    Fan W; Lou HQ; Gong YL; Liu MY; Wang ZQ; Yang JL; Zheng SJ
    Plant Cell Environ; 2014 Jul; 37(7):1586-97. PubMed ID: 24372448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.
    Chen H; He H; Yu D
    Physiol Plant; 2011 Jan; 141(1):11-8. PubMed ID: 20875056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Ren Q; Zhang J; Chen L
    Gene; 2019 Apr; 692():68-78. PubMed ID: 30641208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression analysis of five maize MAP kinase genes in response to various abiotic stresses and signal molecules.
    Wu T; Kong XP; Zong XJ; Li DP; Li DQ
    Mol Biol Rep; 2011 Aug; 38(6):3967-75. PubMed ID: 21120617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.