These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24034347)

  • 1. Global insights into energetic and metabolic networks in Rhodobacter sphaeroides.
    Imam S; Noguera DR; Donohue TJ
    BMC Syst Biol; 2013 Sep; 7():89. PubMed ID: 24034347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iRsp1095: a genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network.
    Imam S; Yilmaz S; Sohmen U; Gorzalski AS; Reed JL; Noguera DR; Donohue TJ
    BMC Syst Biol; 2011 Jul; 5():116. PubMed ID: 21777427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: transcriptome flexibility at diverse growth modes.
    Pappas CT; Sram J; Moskvin OV; Ivanov PS; Mackenzie RC; Choudhary M; Land ML; Larimer FW; Kaplan S; Gomelsky M
    J Bacteriol; 2004 Jul; 186(14):4748-58. PubMed ID: 15231807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathways involved in reductant distribution during photobiological H(2) production by Rhodobacter sphaeroides.
    Kontur WS; Ziegelhoffer EC; Spero MA; Imam S; Noguera DR; Donohue TJ
    Appl Environ Microbiol; 2011 Oct; 77(20):7425-9. PubMed ID: 21856820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodobacter sphaeroides adaptation to high concentrations of cobalt ions requires energetic metabolism changes.
    Volpicella M; Costanza A; Palumbo O; Italiano F; Claudia L; Placido A; Picardi E; Carella M; Trotta M; Ceci LR
    FEMS Microbiol Ecol; 2014 May; 88(2):345-57. PubMed ID: 24579873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the effects of light intensity on bioproduction and maintenance energy during photosynthetic growth of Rhodobacter sphaeroides.
    Imam S; Fitzgerald CM; Cook EM; Donohue TJ; Noguera DR
    Photosynth Res; 2015 Feb; 123(2):167-82. PubMed ID: 25428581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1.
    O'Gara JP; Kaplan S
    J Bacteriol; 1997 Mar; 179(6):1951-61. PubMed ID: 9068641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin is essential for Rhodobacter sphaeroides growth by aerobic and anaerobic respiration.
    Pasternak C; Assemat K; Clément-Métral JD; Klug G
    Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():83-91. PubMed ID: 9025281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation.
    Benning C; Beatty JT; Prince RC; Somerville CR
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1561-5. PubMed ID: 8434018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Link between the membrane-bound pyridine nucleotide transhydrogenase and glutathione-dependent processes in Rhodobacter sphaeroides.
    Hickman JW; Barber RD; Skaar EP; Donohue TJ
    J Bacteriol; 2002 Jan; 184(2):400-9. PubMed ID: 11751816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Genome-Scale Experimental and Computational Methods To Identify Essential Genes in
    Burger BT; Imam S; Scarborough MJ; Noguera DR; Donohue TJ
    mSystems; 2017; 2(3):. PubMed ID: 28744485
    [No Abstract]   [Full Text] [Related]  

  • 12. The sRNA SorY confers resistance during photooxidative stress by affecting a metabolite transporter in Rhodobacter sphaeroides.
    Adnan F; Weber L; Klug G
    RNA Biol; 2015; 12(5):569-77. PubMed ID: 25833751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barriers to 3-Hydroxypropionate-Dependent Growth of Rhodobacter sphaeroides by Distinct Disruptions of the Ethylmalonyl Coenzyme A Pathway.
    Carlson SJ; Fleig A; Baron MK; Berg IA; Alber BE
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455284
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of dor gene products in controlling the P2 promoter of the cytochrome c2 gene, cycA, in Rhodobacter sphaeroides.
    Tavano CL; Comolli JC; Donohue TJ
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1893-1899. PubMed ID: 15184575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of TnphoA gene fusions in Rhodobacter sphaeroides: isolation and characterization of a respiratory mutant unable to utilize dimethyl sulfoxide as a terminal electron acceptor during anaerobic growth in the dark on glucose.
    Moore MD; Kaplan S
    J Bacteriol; 1989 Aug; 171(8):4385-94. PubMed ID: 2546920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile cytochrome c2 and membrane-anchored cytochrome cy are both efficient electron donors to the cbb3- and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides.
    Daldal F; Mandaci S; Winterstein C; Myllykallio H; Duyck K; Zannoni D
    J Bacteriol; 2001 Mar; 183(6):2013-24. PubMed ID: 11222600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic evidence for the role of isocytochrome c2 in photosynthetic growth of Rhodobacter sphaeroides Spd mutants.
    Rott MA; Witthuhn VC; Schilke BA; Soranno M; Ali A; Donohue TJ
    J Bacteriol; 1993 Jan; 175(2):358-66. PubMed ID: 8380401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria.
    McEwan AG
    Antonie Van Leeuwenhoek; 1994; 66(1-3):151-64. PubMed ID: 7747929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of regulatory mutants in photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 and partial complementation of a PrrB mutant by the HupT histidine-kinase.
    Gomelsky M; Kaplan S
    Microbiology (Reading); 1995 Aug; 141 ( Pt 8)():1805-1819. PubMed ID: 7551045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state.
    Zeilstra-Ryalls JH; Kaplan S
    J Bacteriol; 1996 Feb; 178(4):985-93. PubMed ID: 8576072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.