These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin. Strobel KL; Pfeiffer KA; Blanch HW; Clark DS J Biol Chem; 2015 Sep; 290(37):22818-26. PubMed ID: 26209638 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Ko JK; Ximenes E; Kim Y; Ladisch MR Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138 [TBL] [Abstract][Full Text] [Related]
5. Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Rahikainen JL; Moilanen U; Nurmi-Rantala S; Lappas A; Koivula A; Viikari L; Kruus K Bioresour Technol; 2013 Oct; 146():118-125. PubMed ID: 23920120 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. Szijártó N; Siika-Aho M; Tenkanen M; Alapuranen M; Vehmaanperä J; Réczey K; Viikari L J Biotechnol; 2008 Sep; 136(3-4):140-7. PubMed ID: 18635283 [TBL] [Abstract][Full Text] [Related]
7. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Lou H; Wang M; Lai H; Lin X; Zhou M; Yang D; Qiu X Bioresour Technol; 2013 Oct; 146():478-484. PubMed ID: 23958680 [TBL] [Abstract][Full Text] [Related]
8. The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Le Costaouëc T; Pakarinen A; Várnai A; Puranen T; Viikari L Bioresour Technol; 2013 Sep; 143():196-203. PubMed ID: 23796604 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Rahikainen JL; Martin-Sampedro R; Heikkinen H; Rovio S; Marjamaa K; Tamminen T; Rojas OJ; Kruus K Bioresour Technol; 2013 Apr; 133():270-8. PubMed ID: 23428824 [TBL] [Abstract][Full Text] [Related]
10. pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. Lou H; Zhu JY; Lan TQ; Lai H; Qiu X ChemSusChem; 2013 May; 6(5):919-27. PubMed ID: 23554287 [TBL] [Abstract][Full Text] [Related]
11. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass. Arslan B; Colpan M; Ju X; Zhang X; Kostyukova A; Abu-Lail NI Biomacromolecules; 2016 May; 17(5):1705-15. PubMed ID: 27065303 [TBL] [Abstract][Full Text] [Related]
12. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei. Eriksson T; Karlsson J; Tjerneld F Appl Biochem Biotechnol; 2002 Apr; 101(1):41-60. PubMed ID: 12008866 [TBL] [Abstract][Full Text] [Related]
13. Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose. Lin X; Wu L; Huang S; Qin Y; Qiu X; Lou H Carbohydr Polym; 2019 Mar; 207():52-58. PubMed ID: 30600035 [TBL] [Abstract][Full Text] [Related]
14. Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Marjamaa K; Toth K; Bromann PA; Szakacs G; Kruus K Enzyme Microb Technol; 2013 May; 52(6-7):358-69. PubMed ID: 23608505 [TBL] [Abstract][Full Text] [Related]
15. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Nakagame S; Chandra RP; Kadla JF; Saddler JN Bioresour Technol; 2011 Mar; 102(6):4507-17. PubMed ID: 21256740 [TBL] [Abstract][Full Text] [Related]
16. Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases. Taylor CB; Payne CM; Himmel ME; Crowley MF; McCabe C; Beckham GT J Phys Chem B; 2013 May; 117(17):4924-33. PubMed ID: 23534900 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. Tu M; Pan X; Saddler JN J Agric Food Chem; 2009 Sep; 57(17):7771-8. PubMed ID: 19722706 [TBL] [Abstract][Full Text] [Related]
18. Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Reinikainen T; Teleman O; Teeri TT Proteins; 1995 Aug; 22(4):392-403. PubMed ID: 7479712 [TBL] [Abstract][Full Text] [Related]
19. Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin. Akimkulova A; Zhou Y; Zhao X; Liu D Bioresour Technol; 2016 May; 208():110-116. PubMed ID: 26930032 [TBL] [Abstract][Full Text] [Related]
20. Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase. Beckham GT; Matthews JF; Bomble YJ; Bu L; Adney WS; Himmel ME; Nimlos MR; Crowley MF J Phys Chem B; 2010 Jan; 114(3):1447-53. PubMed ID: 20050714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]