BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 24034738)

  • 1. Object information based interactive segmentation for fatty tissue extraction.
    Zhou ZG; Liu F; Jiao LC; Li LL; Wang XD; Gou SP; Wang S
    Comput Biol Med; 2013 Oct; 43(10):1462-70. PubMed ID: 24034738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-object segmentation framework using deformable models for medical imaging analysis.
    Namías R; D'Amato JP; Del Fresno M; Vénere M; Pirró N; Bellemare ME
    Med Biol Eng Comput; 2016 Aug; 54(8):1181-92. PubMed ID: 26392182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies.
    Haas B; Coradi T; Scholz M; Kunz P; Huber M; Oppitz U; André L; Lengkeek V; Huyskens D; van Esch A; Reddick R
    Phys Med Biol; 2008 Mar; 53(6):1751-71. PubMed ID: 18367801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Region-based snake with edge constraint for segmentation of lymph nodes on CT images.
    Yu P; Poh CL
    Comput Biol Med; 2015 May; 60():86-91. PubMed ID: 25756705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated and interactive lesion detection and segmentation in uterine cervix images.
    Alush A; Greenspan H; Goldberger J
    IEEE Trans Med Imaging; 2010 Feb; 29(2):488-501. PubMed ID: 20129849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical CT imaging of gastric cancer: normal wall appearance and the potential for staging.
    Kadowaki K; Murakami T; Yoshioka H; Kim T; Takahashi S; Tomoda K; Narumi Y; Nakamura H
    Radiat Med; 2000; 18(1):47-54. PubMed ID: 10852655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated spine and vertebrae detection in CT images using object-based image analysis.
    Schwier M; Chitiboi T; Hülnhagen T; Hahn HK
    Int J Numer Method Biomed Eng; 2013 Sep; 29(9):938-63. PubMed ID: 23946190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Region segmentation using information divergence measures.
    Hibbard LS
    Med Image Anal; 2004 Sep; 8(3):233-44. PubMed ID: 15450218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor segmentation from computed tomography image data using a probabilistic pixel selection approach.
    Foo JL; Miyano G; Lobe T; Winer E
    Comput Biol Med; 2011 Jan; 41(1):56-65. PubMed ID: 21146165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Prognosis in stomach cancer depending on the morphological tissue changes around the tumor and metastases in the lymph nodes].
    Fisher ME; Fastovskiĭ VL
    Klin Khir (1962); 1978 May; (5):17-21. PubMed ID: 351271
    [No Abstract]   [Full Text] [Related]  

  • 11. Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior.
    Feulner J; Zhou SK; Hammon M; Hornegger J; Comaniciu D
    Med Image Anal; 2013 Feb; 17(2):254-70. PubMed ID: 23246185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining region-based and imprecise boundary-based cues for interactive medical image segmentation.
    Jones JL; Xie X; Essa E
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1649-66. PubMed ID: 25377853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections.
    Wählby C; Sintorn IM; Erlandsson F; Borgefors G; Bengtsson E
    J Microsc; 2004 Jul; 215(Pt 1):67-76. PubMed ID: 15230877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional visualization and analysis methodologies: a current perspective.
    Udupa JK
    Radiographics; 1999; 19(3):783-806. PubMed ID: 10336203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple endocrine neoplasia type 1 with gastric neuroendocrine tumor presented with gastric polyposis.
    Liu CT; Chiu YC; Chen YY
    Clin Gastroenterol Hepatol; 2015 May; 13(5):e45. PubMed ID: 25460558
    [No Abstract]   [Full Text] [Related]  

  • 16. Learning full pairwise affinities for spectral segmentation.
    Kim TH; Lee KM; Lee SU
    IEEE Trans Pattern Anal Mach Intell; 2013 Jul; 35(7):1690-703. PubMed ID: 23681996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling interaction for segmentation of neighboring structures.
    Yan P; Kassim AA; Shen W; Shah M
    IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):252-62. PubMed ID: 19171526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usefulness of semi-automatic volumetry compared to established linear measurements in predicting lymph node metastases in MSCT.
    Buerke B; Gerss J; Puesken M; Weckesser M; Heindel W; Wessling J
    Acta Radiol; 2011 Jun; 52(5):540-6. PubMed ID: 21498286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects.
    Kloster M; Kauer G; Beszteri B
    BMC Bioinformatics; 2014 Jun; 15():218. PubMed ID: 24964954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereological evaluation of laryngeal cancers using computed tomography via the Cavalieri method: correlation between tumor volume and number of neck lymph node metastases.
    Yoruk O; Dane S; Ucuncu H; Aktan B; Can I
    J Craniofac Surg; 2009 Sep; 20(5):1504-7. PubMed ID: 19816286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.