These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 24034748)
1. Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Kowal M; Filipczuk P; Obuchowicz A; Korbicz J; Monczak R Comput Biol Med; 2013 Oct; 43(10):1563-72. PubMed ID: 24034748 [TBL] [Abstract][Full Text] [Related]
2. Multi-label fast marching and seeded watershed segmentation methods for diagnosis of breast cancer cytology. Filipczuk P; Kowal M; Obuchowicz A Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7368-71. PubMed ID: 24111447 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided classification of breast cancer nuclei. Schnorrenberg F; Pattichis CS; Schizas CN; Kyriacou K; Vassiliou M Technol Health Care; 1996 Aug; 4(2):147-61. PubMed ID: 8885093 [TBL] [Abstract][Full Text] [Related]
4. Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering. Chang YC; Huang YH; Huang CS; Chang PK; Chen JH; Chang RF Magn Reson Imaging; 2012 Apr; 30(3):312-22. PubMed ID: 22245697 [TBL] [Abstract][Full Text] [Related]
5. Computer-Aided Breast Cancer Diagnosis Based on the Analysis of Cytological Images of Fine Needle Biopsies. Filipczuk P; Fevens T; Krzyzak A; Monczak R IEEE Trans Med Imaging; 2013 Dec; 32(12):2169-78. PubMed ID: 23912498 [TBL] [Abstract][Full Text] [Related]
6. Computer-aided diagnosis of breast cancer using cytological images: A systematic review. Saha M; Mukherjee R; Chakraborty C Tissue Cell; 2016 Oct; 48(5):461-74. PubMed ID: 27528421 [TBL] [Abstract][Full Text] [Related]
7. Multimodal sparse representation-based classification for lung needle biopsy images. Shi Y; Gao Y; Yang Y; Zhang Y; Wang D IEEE Trans Biomed Eng; 2013 Oct; 60(10):2675-85. PubMed ID: 23674412 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided diagnosis system for classifying benign and malignant thyroid nodules in multi-stained FNAB cytological images. Gopinath B; Shanthi N Australas Phys Eng Sci Med; 2013 Jun; 36(2):219-30. PubMed ID: 23690210 [TBL] [Abstract][Full Text] [Related]
9. A new automatic image analysis method for assessing estrogen receptors' status in breast tissue specimens. Mouelhi A; Sayadi M; Fnaiech F; Mrad K; Ben Romdhane K Comput Biol Med; 2013 Dec; 43(12):2263-77. PubMed ID: 24290943 [TBL] [Abstract][Full Text] [Related]
10. Cell type classifiers for breast cancer microscopic images based on fractal dimension texture analysis of image color layers. Jitaree S; Phinyomark A; Boonyaphiphat P; Phukpattaranont P Scanning; 2015; 37(2):145-51. PubMed ID: 25689353 [TBL] [Abstract][Full Text] [Related]
11. A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Sahan S; Polat K; Kodaz H; Güneş S Comput Biol Med; 2007 Mar; 37(3):415-23. PubMed ID: 16904096 [TBL] [Abstract][Full Text] [Related]
12. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions. Milenković J; Hertl K; Košir A; Zibert J; Tasič JF Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472 [TBL] [Abstract][Full Text] [Related]
13. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems. Acharya UR; Vinitha Sree S; Krishnan MM; Molinari F; Garberoglio R; Suri JS Ultrasonics; 2012 Apr; 52(4):508-20. PubMed ID: 22154208 [TBL] [Abstract][Full Text] [Related]
14. A fourth order PDE based fuzzy c- means approach for segmentation of microscopic biopsy images in presence of Poisson noise for cancer detection. Kumar R; Srivastava S; Srivastava R Comput Methods Programs Biomed; 2017 Jul; 146():59-68. PubMed ID: 28688490 [TBL] [Abstract][Full Text] [Related]
15. Quantitative breast mass classification based on the integration of B-mode features and strain features in elastography. Lo CM; Chang YC; Yang YW; Huang CS; Chang RF Comput Biol Med; 2015 Sep; 64():91-100. PubMed ID: 26159906 [TBL] [Abstract][Full Text] [Related]
16. Fuzzy method for pre-diagnosis of breast cancer from the Fine Needle Aspirate analysis. Sizilio GR; Leite CR; Guerreiro AM; Neto AD Biomed Eng Online; 2012 Nov; 11():83. PubMed ID: 23122391 [TBL] [Abstract][Full Text] [Related]
17. Influence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsies. Jeleń Ł; Krzyżak A; Fevens T; Jeleń M Comput Biol Med; 2016 Dec; 79():80-91. PubMed ID: 27768905 [TBL] [Abstract][Full Text] [Related]
18. A CAD System for the Acquisition and Classification of Breast TMA in Pathology. Fernández-Carrobles MM; Bueno G; Déniz O; Salido J; García-Rojo M; González-López L Stud Health Technol Inform; 2015; 210():756-60. PubMed ID: 25991255 [TBL] [Abstract][Full Text] [Related]
19. [Needle aspiration cytology of the breast: current perspective on the role in diagnosis and management]. Kocjan G Acta Med Croatica; 2008 Oct; 62(4):391-401. PubMed ID: 19205416 [TBL] [Abstract][Full Text] [Related]
20. Fractal characterization of chromatin appearance for diagnosis in breast cytology. Einstein AJ; Wu HS; Sanchez M; Gil J J Pathol; 1998 Aug; 185(4):366-81. PubMed ID: 9828835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]