These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 24034816)

  • 1. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
    Tummler K; Lubitz T; Schelker M; Klipp E
    FEBS J; 2014 Jan; 281(2):549-71. PubMed ID: 24034816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question.
    Schnell S
    FEBS J; 2014 Jan; 281(2):464-72. PubMed ID: 24245583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule enzymology à la Michaelis-Menten.
    Grima R; Walter NG; Schnell S
    FEBS J; 2014 Jan; 281(2):518-30. PubMed ID: 24289171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting signal from noise: kinetic mechanisms from a Michaelis-Menten-like expression for enzymatic fluctuations.
    Moffitt JR; Bustamante C
    FEBS J; 2014 Jan; 281(2):498-517. PubMed ID: 24428386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects.
    Noor E; Flamholz A; Liebermeister W; Bar-Even A; Milo R
    FEBS Lett; 2013 Sep; 587(17):2772-7. PubMed ID: 23892083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges for an enzymatic reaction kinetics database.
    Wittig U; Rey M; Kania R; Bittkowski M; Shi L; Golebiewski M; Weidemann A; Müller W; Rojas I
    FEBS J; 2014 Jan; 281(2):572-82. PubMed ID: 24165050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical steady-state enzyme kinetics.
    Lorsch JR
    Methods Enzymol; 2014; 536():3-15. PubMed ID: 24423262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule Michaelis-Menten equations.
    Kou SC; Cherayil BJ; Min W; English BP; Xie XS
    J Phys Chem B; 2005 Oct; 109(41):19068-81. PubMed ID: 16853459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
    Du B; Zielinski DC; Kavvas ES; Dräger A; Tan J; Zhang Z; Ruggiero KE; Arzumanyan GA; Palsson BO
    BMC Syst Biol; 2016 Jun; 10(1):40. PubMed ID: 27266508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERK as a model for systems biology of enzyme kinetics in cells.
    Futran AS; Link AJ; Seger R; Shvartsman SY
    Curr Biol; 2013 Nov; 23(21):R972-9. PubMed ID: 24200329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic modeling as a tool to integrate multilevel dynamic experimental data.
    Mogilevskaya E; Bagrova N; Plyusnina T; Gizzatkulov N; Metelkin E; Goryacheva E; Smirnov S; Kosinsky Y; Dorodnov A; Peskov K; Karelina T; Goryanin I; Demin O
    Methods Mol Biol; 2009; 563():197-218. PubMed ID: 19597787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generic rate law for surface-active enzymes.
    Kartal O; Ebenhöh O
    FEBS Lett; 2013 Sep; 587(17):2882-90. PubMed ID: 23892080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic measurements for enzyme immobilization.
    Cooney MJ
    Methods Mol Biol; 2011; 679():207-25. PubMed ID: 20865399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of signal transduction networks: a pedagogical exposition.
    Prasad A
    Methods Mol Biol; 2012; 880():219-41. PubMed ID: 23361987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational Nonequilibrium Enzyme Kinetics: Generalized Michaelis-Menten Equation.
    Piephoff DE; Wu J; Cao J
    J Phys Chem Lett; 2017 Aug; 8(15):3619-3623. PubMed ID: 28737397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maini's many contributions to mathematical enzyme kinetics: A review.
    Burke MA
    J Theor Biol; 2019 Nov; 481():24-27. PubMed ID: 30553723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-scale separation--Michaelis and Menten's old idea, still bearing fruit.
    Gunawardena J
    FEBS J; 2014 Jan; 281(2):473-88. PubMed ID: 24103070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.