BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 24035426)

  • 1. Simulation of CO2-water-rock interactions on geologic CO2 sequestration under geological conditions of China.
    Wang T; Wang H; Zhang F; Xu T
    Mar Pollut Bull; 2013 Nov; 76(1-2):307-14. PubMed ID: 24035426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2010 Aug; 44(15):5999-6005. PubMed ID: 20586472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions.
    Carroll SA; McNab WW; Dai Z; Torres SC
    Environ Sci Technol; 2013 Jan; 47(1):252-61. PubMed ID: 22873684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2011 Feb; 45(4):1737-43. PubMed ID: 21222477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure.
    Wang F; Giammar DE
    Environ Sci Technol; 2013 Jan; 47(1):168-73. PubMed ID: 22650147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ spectrophotometric determination of pH under geologic CO2 sequestration conditions: method development and application.
    Shao H; Thompson CJ; Qafoku O; Cantrell KJ
    Environ Sci Technol; 2013 Jan; 47(1):63-70. PubMed ID: 22708540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability reduction produced by grain reorganization and accumulation of exsolved CO2 during geologic carbon sequestration: a new CO2 trapping mechanism.
    Luhmann AJ; Kong XZ; Tutolo BM; Ding K; Saar MO; Seyfried WE
    Environ Sci Technol; 2013 Jan; 47(1):242-51. PubMed ID: 23140278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.
    Yang C; Dai Z; Romanak KD; Hovorka SD; Treviño RH
    Environ Sci Technol; 2014; 48(5):2798-806. PubMed ID: 24494823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compositional data analysis and geochemical modeling of CO
    Kim SH; Choi BY; Lee G; Yun ST; Kim SO
    Environ Geochem Health; 2019 Feb; 41(1):357-380. PubMed ID: 29264817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of H2S injection on the CO2-brine-sandstone interaction under 21MPa and 70°C.
    Li C; Zhang F; Lyu C; Hao J; Song J; Zhang S
    Mar Pollut Bull; 2016 May; 106(1-2):17-24. PubMed ID: 27038880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments.
    Choi YS; Nesic S; Young D
    Environ Sci Technol; 2010 Dec; 44(23):9233-8. PubMed ID: 21049923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO₂ sequestration through mineral carbonation of iron oxyhydroxides.
    Lammers K; Murphy R; Riendeau A; Smirnov A; Schoonen MA; Strongin DR
    Environ Sci Technol; 2011 Dec; 45(24):10422-8. PubMed ID: 22066460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Nanoscale Basis of CO2 Trapping for Geologic Storage.
    Bourg IC; Beckingham LE; DePaolo DJ
    Environ Sci Technol; 2015 Sep; 49(17):10265-84. PubMed ID: 26266820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal release from sandstones under experimentally and numerically simulated CO2 leakage conditions.
    Kirsch K; Navarre-Sitchler AK; Wunsch A; McCray JE
    Environ Sci Technol; 2014; 48(3):1436-42. PubMed ID: 24417392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.
    Saraji S; Goual L; Piri M; Plancher H
    Langmuir; 2013 Jun; 29(23):6856-66. PubMed ID: 23627310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical methods.
    Dafflon B; Wu Y; Hubbard SS; Birkholzer JT; Daley TM; Pugh JD; Peterson JE; Trautz RC
    Environ Sci Technol; 2013 Jan; 47(1):314-21. PubMed ID: 22681490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinctive Reactivities at Biotite Edge and Basal Planes in the Presence of Organic Ligands: Implications for Organic-Rich Geologic CO2 Sequestration.
    Zhang L; Jun YS
    Environ Sci Technol; 2015 Aug; 49(16):10217-25. PubMed ID: 26171995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.