These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 24035655)

  • 1. Modeling bromide effects on yields and speciation of dihaloacetonitriles formed in chlorinated drinking water.
    Roccaro P; Chang HS; Vagliasindi FG; Korshin GV
    Water Res; 2013 Oct; 47(16):5995-6006. PubMed ID: 24035655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pH on the speciation coefficients in models of bromide influence on the formation of trihalomethanes and haloacetic acids.
    Roccaro P; Korshin GV; Cook D; Chow CW; Drikas M
    Water Res; 2014 Oct; 62():117-26. PubMed ID: 24945979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of bromine substitution factors of DBPs during chlorination and chloramination.
    Hua G; Reckhow DA
    Water Res; 2012 Sep; 46(13):4208-16. PubMed ID: 22687526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.
    Bond T; Huang J; Graham NJ; Templeton MR
    Sci Total Environ; 2014 Feb; 470-471():469-79. PubMed ID: 24176694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ternary Model of the Speciation of I-/Br-/Cl-Trihalomethanes Formed in Chloraminated Surface Waters.
    Yan M; Li M; Roccaro P; Korshin GV
    Environ Sci Technol; 2016 Apr; 50(8):4468-75. PubMed ID: 27007081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian statistical modeling of disinfection byproduct (DBP) bromine incorporation in the ICR database.
    Francis RA; Vanbriesen JM; Small MJ
    Environ Sci Technol; 2010 Feb; 44(4):1232-9. PubMed ID: 20095529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.
    Pressman JG; McCurry DL; Parvez S; Rice GE; Teuschler LK; Miltner RJ; Speth TF
    Water Res; 2012 Oct; 46(16):5343-54. PubMed ID: 22846256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Chemical Examination of the Sequential Halogen Incorporation Scheme for the Modeling of Speciation of I/Br/Cl-Containing Trihalomethanes.
    Zhang C; Li M; Han X; Yan M
    Environ Sci Technol; 2018 Feb; 52(4):2162-2169. PubMed ID: 29357232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water.
    Roccaro P; Chang HS; Vagliasindi FG; Korshin GV
    Water Res; 2008 Apr; 42(8-9):1879-88. PubMed ID: 18063005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate distributions of disinfection by-products in chlorinated drinking water.
    Francis RA; Small MJ; VanBriesen JM
    Water Res; 2009 Aug; 43(14):3453-68. PubMed ID: 19539341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pre-ozonation on the formation and speciation of DBPs.
    Hua G; Reckhow DA
    Water Res; 2013 Sep; 47(13):4322-30. PubMed ID: 23764583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of BrCl, Br₂, BrOCl, Br₂O, and HOBr toward dimethenamid in solutions of bromide + aqueous free chlorine.
    Sivey JD; Arey JS; Tentscher PR; Roberts AL
    Environ Sci Technol; 2013 Feb; 47(3):1330-8. PubMed ID: 23323704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of natural organic matter with aqueous chlorine and bromine.
    Westerhoff P; Chao P; Mash H
    Water Res; 2004 Mar; 38(6):1502-13. PubMed ID: 15016527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water.
    Pan Y; Zhang X
    Environ Sci Technol; 2013 Feb; 47(3):1265-73. PubMed ID: 23298294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.
    Criquet J; Rodriguez EM; Allard S; Wellauer S; Salhi E; Joll CA; von Gunten U
    Water Res; 2015 Nov; 85():476-86. PubMed ID: 26379203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature and pH on dehalogenation of total organic chlorine, bromine and iodine in drinking water.
    Abusallout I; Rahman S; Hua G
    Chemosphere; 2017 Nov; 187():11-18. PubMed ID: 28787638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates.
    Kristiana I; Gallard H; Joll C; Croué JP
    Water Res; 2009 Sep; 43(17):4177-86. PubMed ID: 19616274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of bromide on the formation of disinfection by-products during wastewater chlorination.
    Sun YX; Wu QY; Hu HY; Tian J
    Water Res; 2009 May; 43(9):2391-8. PubMed ID: 19345975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply.
    Uyak V; Toroz I
    J Hazard Mater; 2007 Oct; 149(2):445-51. PubMed ID: 17517472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.