These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24035727)

  • 1. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE).
    Savi D; Kasser U; Ott T
    Waste Manag; 2013 Dec; 33(12):2737-43. PubMed ID: 24035727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The status and development of treatment techniques of typical waste electrical and electronic equipment in China: a review.
    He Y; Xu Z
    Waste Manag Res; 2014 Apr; 32(4):254-69. PubMed ID: 24633555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WEEE management in Europe and China - A comparison.
    Salhofer S; Steuer B; Ramusch R; Beigl P
    Waste Manag; 2016 Nov; 57():27-35. PubMed ID: 26626812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.
    Wang R; Xu Z
    Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WEEE and portable batteries in residual household waste: quantification and characterisation of misplaced waste.
    Bigum M; Petersen C; Christensen TH; Scheutz C
    Waste Manag; 2013 Nov; 33(11):2372-80. PubMed ID: 23890798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE): a follow-up.
    Wäger PA; Hischier R; Eugster M
    Sci Total Environ; 2011 Apr; 409(10):1746-56. PubMed ID: 21342702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of pneumatic jigging in the recovery of metallic fraction from shredded printed wiring boards.
    Wang Z; Hall P; Miles NJ; Wu T; Lambert P; Gu F
    Waste Manag Res; 2015 Sep; 33(9):785-93. PubMed ID: 26070501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety.
    Terazono A; Oguchi M; Iino S; Mogi S
    Waste Manag; 2015 May; 39():246-57. PubMed ID: 25716742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in-depth literature review of the waste electrical and electronic equipment context: trends and evolution.
    Pérez-Belis V; Bovea MD; Ibáñez-Forés V
    Waste Manag Res; 2015 Jan; 33(1):3-29. PubMed ID: 25406121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.
    Zhou L; Xu Z
    Environ Sci Technol; 2012 May; 46(9):4713-24. PubMed ID: 22463615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.
    Zhang S; Ding Y; Liu B; Pan D; Chang CC; Volinsky AA
    Waste Manag; 2015 Nov; 45():361-73. PubMed ID: 26059074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of legislative measures on electrical and electronic waste in the People's Republic of China.
    Chung SS; Zhang C
    Waste Manag; 2011 Dec; 31(12):2638-46. PubMed ID: 21839627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Delphi-AHP methods to select the priorities of WEEE for recycling in a waste management decision-making tool.
    Kim M; Jang YC; Lee S
    J Environ Manage; 2013 Oct; 128():941-8. PubMed ID: 23892135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of WEEE management and effects of the fund policy for subsidizing WEEE treating in China.
    Yu L; He W; Li G; Huang J; Zhu H
    Waste Manag; 2014 Sep; 34(9):1705-14. PubMed ID: 24910142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What drives WEEE recycling? A comparative study concerning legislation, collection and recycling.
    Dias PR; Cenci MP; Bernardes AM; Huda N
    Waste Manag Res; 2022 Oct; 40(10):1527-1538. PubMed ID: 35212576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waste electrical and electronic equipment (WEEE) estimation: A case study of Ahvaz City, Iran.
    Alavi N; Shirmardi M; Babaei A; Takdastan A; Bagheri N
    J Air Waste Manag Assoc; 2015 Mar; 65(3):298-305. PubMed ID: 25947126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of removal of components containing hazardous substances from small WEEE in Austria.
    Salhofer S; Tesar M
    J Hazard Mater; 2011 Feb; 186(2-3):1481-8. PubMed ID: 21236569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries.
    Ibanescu D; Cailean Gavrilescu D; Teodosiu C; Fiore S
    Waste Manag; 2018 Mar; 73():39-53. PubMed ID: 29274687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal.
    Ortuño N; Conesa JA; Moltó J; Font R
    Sci Total Environ; 2014 Nov; 499():27-35. PubMed ID: 25173859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling Waste Electrical and Electronic Equipment (WEEE) and the Management of Its Toxic Substances in Taiwan-A Case Study.
    Tsai WT
    Toxics; 2020 Jul; 8(3):. PubMed ID: 32645852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.